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Abstract of Dissertation 

 

 

AI Behind the Wheel:  

Work, Economics, and Preferences in the Era of Autonomous Vehicles 

 

 

Autonomous vehicles (AVs) have the potential to dramatically disrupt 

transportation patterns and reshape cities and communities. At the core of this disruption 

is the substitution of a human driver with artificial intelligence (AI) technologies. Will 

AI-enabled vehicle automation help actualize visions of an enhanced transportation 

future, or will it exacerbate existing problems? The answer will ultimately depend on the 

capabilities of AVs and their position in our complex, sociotechnical transportation 

systems. While history and prior research offer lessons on how conventional automation 

can impact systems, less is known about the potential effects of AI-enabled automation, 

particularly when AI technologies are deployed to perform non-routine manual tasks. This 

dissertation unpacks several potential impacts of AVs and uses them as a case study of 

the potential societal effects of AI-enabled automation in the physical world. 

AI advancements are changing the ways in which automation technologies can 

interact with and displace human labor. Unlike routine manual tasks like repetitive 

assembly that have undergone substantial substitution by conventional automation 

technologies, non-routine physical tasks have historically had limited opportunities for 

substitution or complementarity. AI advancements, however, are expanding automation 

technologies’ capabilities within the non-routine task realm, demanding research into 

their resulting labor impacts. The first study in this dissertation uses direct observations, 

semi-structured interviews, and archival data to identify and map how tasks and labor 

roles change in response to the introduction of autonomous vehicles to a taxi work 
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system. This detailed analysis empirically demonstrates that introduction of AI 

technologies spurs the rebundling of tasks and reorganization of adjacent labor roles, and 

reveals three archetypal patterns of role change: distributing, consolidating, and 

scaffolding. These patterns can be used to refine labor outcome analyses and predict labor 

impacts at the task, role, and sector or economy level. 

What motivates the substitution of a human driver with an AV system? While the 

promise of safer road travel is an oft cited motivation, the lure of lower operating costs is 

arguably the primary driver of investment in AV development. For years, Transportation 

Network Companies (TNCs) like Uber and Lyft, and emerging AV companies like 

Waymo, Cruise, and Zoox, have raised billions of dollars by promising a future of 

autonomous taxi fleets (robotaxis) that would eliminate the cost of a driver and pave a 

path to profitability. The future operating costs of robotaxi services, however, remain 

highly uncertain. Prior studies estimating the future costs of robotaxi services lack 

precision in two key areas: 1) the cost of autonomous vehicle technologies and 2) the 

labor costs needed to operate a robotaxi service. These two cost categories are critical as 

the payoff to firms for automating a particular task depends on the cost of the technology 

relative to the cost of the worker who performs that task. 

The second study in this dissertation draws on the first study’s findings about 

changing labor roles to develop ground-up cost models for a traditional taxi and a 

robotaxi service in order to compare their relative competitiveness under different 

operating conditions. The models reveal that labor remains a significant cost for robotaxi 

services but that robotaxi operating costs are still lower than those of traditional taxi 

services. Ultimately, utilization rates and annual mileage are the most influential factors 
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for robotaxi competitiveness. Purported cost savings of AVs, as well as other capital-

intensive AI technologies, must thus be considered in light of their remaining labor costs 

and intended operational contexts. 

AV impacts, as well as those of other AI-enabled technologies, will ultimately 

depend on the extent to which people choose to adopt them. Some researchers fear that 

robotaxi services could compete with not only taxi and ride-hailing services, but also 

public transit services if vehicle automation enables significant price decreases. The third 

study in this dissertation uses responses from an online choice-based conjoint survey 

fielded in the Washington, D.C. Metropolitan Region (N = 1,694) in October 2021 to 

estimate discrete choice models of public preferences for different autonomous (ride-

hailing, shared ride-hailing, bus) and non-autonomous (ride-hailing, shared ride-hailing, 

bus, rail) modes. The estimated models are then used to simulate future marketplace 

competition across a range of trip scenarios. On average, respondents were only willing 

to pay a premium for autonomous modes when a vehicle attendant was also present, 

suggesting that the presence of an attendant may be a critical feature for early AV 

adoption. Additionally, scenario analyses revealed that transit remained competitive with 

autonomous ride-hailing modes for trips where good transit options were available. These 

results suggest that fears of a mass transition away from transit to AVs may be limited by 

people’s willingness to use AVs, at least in the short term. Moreover, these findings 

highlight the importance of investigating multiple design factors that might influence 

public adoption of emerging AI technologies.  

Taken together, this dissertation examines AVs not simply as a technology, but as 

an element of a complex, sociotechnical system. Building on prior work, this research 
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seeks to address gaps regarding how AI-enabled AVs are reshaping tasks and labor roles, 

changing the economics of existing services, and altering public preferences for different 

transportation modes. AI technologies and their societal impacts are not predetermined 

but rather emerge from a process of mutual shaping between technology and society. The 

aspiration with AVs is that they can help address longstanding problems with our existing 

transportation systems. By gaining early insights into the impacts of AVs and other AI 

technologies, we create the opportunity to proactively shape outcomes toward desirable 

futures.   
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Chapter 1: Introduction and Background 

 

Therefore a complex artifact…is necessarily embedded in complex systems, whose 

purpose is, first, to divide effort and knowledge, and second, to coordinate tasks and 

decisions. As the basic artifact becomes more complex, moreover, the number of 

tasks and decisions that surround it will increase. To respond to these demands, 

the coordinating systems must themselves grow. The coordinating systems’ 

efficiency in dealing with higher levels of complexity in turn will have a huge effect on 

the economics of the artifact—the cost of designing, making, and using it, and the 

extent to which it diffuses through human society. 

- Baldwin and Clark, (2000) (emphasis added) 
 
 

1.1 AI-Enabled Automation in the Physical World 

We live in a time of both optimism and trepidation regarding new artificial 

intelligence (AI) technologies that are entering the public sphere and becoming 

increasingly intertwined in our lives. AI and AI-enhanced systems could complement or 

replace human capabilities with their capacities to process large quantities of data, 

recognize complex patterns, efficiently complete a variety of tasks, and learn over time. 

In doing so, they hold promise of not only increasing efficiency but also helping to 

address many of the persistent problems that plague our complex systems, including 

issues related to environmental sustainability, equity, and labor shortages. Yet there is 

also potential for AI technologies to cause exacerbate sustainability issues, spur 

widespread job loss, and promote an inequitable distribution of harms and benefits.  

While history and prior research offer lessons on how conventional automation 

can impact systems, less is known about the potential effects of AI-enabled automation, 

particularly when automation technologies are deployed to perform physical tasks. 

Unlike routine manual tasks like repetitive assembly that have undergone substantial 

substitution by conventional automation technologies, non-routine physical tasks have 
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historically had limited opportunities for substitution or complementarity (Autor et al., 

2003). AI advancements, however, are expanding automation technologies’ capabilities 

within the non-routine task realm, demanding research into their resulting system-level 

impacts. 

Autonomous vehicles (AVs) offer an ideal domain in which to explore AI-

enabled automation in the physical world. While autonomous vehicles have long been a 

part of public imaginations, development and deployment of AV services have only 

recently become possible due to AI advancements given the complex, non-routine nature 

of roadway driving. As they expand, AV services have the potential to dramatically 

disrupt transportation patterns and reshape cities and communities (Davidson & 

Spinoulas, 2015). Will AVs help actualize visions of an enhanced transportation future, 

or will they exacerbate existing problems? The answer will ultimately depend on the 

capabilities of AVs and their position in our complex, sociotechnical transportation 

systems.  

This present wave of AI-enabled automation calls for investigation of the ways in 

which AI technologies’ new capabilities for performing non-routine manual tasks might 

change our systems in manners that are similar to, or distinct from, prior technological 

transformations. This dissertation unpacks several potential impacts of AVs and uses 

them as a case study of the potential societal effects of AI-enabled automation in the 

physical world. By gaining early insights into the impacts of AVs and other AI 

technologies, we create the opportunity to proactively shape outcomes toward desirable 

futures. 
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1.2 Vehicle Automation: What is it and Where is it Occurring? 

Driverless, autopilot, self-driving, autonomous, automated—multiple terms are 

commonly used when describing vehicle automation. While often used interchangeably, 

these terms actually refer to different types of vehicle automation. Many vehicles that 

individuals own and operate today include limited automation features such as lane-

keeping assistance and automatic braking. These features represent lower levels of 

vehicle automation that still require a human to remain alert and operate the vehicle, and 

are typically classified as Advanced Driver Assistance Systems (ADAS).  

At higher levels of automation, a combination of sensors, computing equipment, 

and software—commonly defined as an automated driving system (ADS)—is able to 

perform the driving task without assistance from the driver, under specific operational 

conditions (SAE, 2021). Table 1-1 presents SAE International’s Levels of Driving 

Automation with additional details from the National Highway Traffic Safety 

Administration (NHTSA) (NHTSA, 2024; SAE, 2021). Per the SAE taxonomy, Levels 0-

2 describe ADAS vehicle features and Levels 3-5 describe ADS-equipped vehicles. 

Though classified as ADS-equipped vehicles, Level 3 vehicles still require the driver to 

take over at times. Researchers define this type of configuration as a mixed-automation 

system, and many have raised concerns about safety issues that may arise from shared 

operational responsibility between the human driver and the automation system (Hancock 

et al., 2020). 
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Table 1-0-1: SAE Levels of Automation with additional details drawn from the National Highway 
and Traffic Safety Administration’s Levels of Automation 

Level Description Examples 

Level 0 No Driving 

Automation 

System provides momentary driving 

assistance, like warnings and alerts, or 

emergency safety interventions while driver 

remains fully engaged and attentive. 

automatic emergency 

braking, blind spot 

warning, lane departure 

warning 

Level 1 Driver 

Assistance 

System provides continuous assistance with 

either acceleration/braking OR steering, 

while driver remains fully engaged and 

attentive. 

lane centering OR 

adaptive cruise control 

Level 2 Partial Driving 

Automation 

System provides continuous assistance with 

both acceleration/braking AND steering, 

while driver remains fully engaged and 

attentive. 

lane centering AND 

adaptive cruise control at 

the same time 

Level 3 Conditional 

Driving 

Automation 

System actively performs driving tasks 

while driver remains available to take over. 

traffic jam chauffer 

Level 4 High Driving 

Automation 

System is fully responsible for driving tasks 

within limited service areas while occupants 

act only as passengers and do not need to be 

engaged. 

Not currently available on 

today’s vehicles for 

consumer purchase in the 

U.S. Available as a shuttle 

or robotaxi service. 

Level 5 Full Driving 

Automation 

System is fully responsible for driving tasks 

while occupants act only as passengers and 

do not need to be engaged. 

Not currently available on 

today’s vehicles for 

consumer purchase in the 

U.S. or as a commercial 

service. Would need to be 

able to operate 

everywhere, in all 

conditions. 

 

The most significant impacts, both positive and negative, resulting from vehicle 

automation are expected to come from Level 4 and Level 5 vehicles. This dissertation 

specifically examines these impacts, and uses the colloquial term autonomous vehicle1 

(AV) when referring to this type of system. AVs are still primarily in the testing and 

development phases, though Level 4 commercial services are available in a few cities. 

During this emergent phase, companies and cities are experimenting with multiple 

                                                           
1 AV researcher Jane Lappin often jokes that using the term autonomous belies the true nature of the 

system—with an autonomous system, you would get into the vehicle and ask it to take you to work and it 

would instead decide to take you to the beach (Lappin, 2023). Nonetheless, the term autonomous vehicle 

has become common within both academic and public discourse and is thus used throughout this 

dissertation. 
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development models for AV deployments, both in terms of business models and the 

physical design of the AV (see Table 1-2 for the most common models for both 

passenger and goods delivery movement). Development of AV services is occurring 

world-wide, with the United States and China leading in terms of current and planned 

number of deployments. AV firms can voluntarily submit information about their 

ongoing AV testing projects and deployments to NHTSA’s AV TEST Initiative. Figure 

1-1 displays a map of reported testing projects and commercial deployments for different 

types of AV services (as of June 2024). Within the U.S., the states with the greatest 

number of deployments are Arizona, California, Florida, and Texas. 

 

Table 1-0-2: Potential development models for autonomous vehicles. 

Development Model Description 

Private autonomous vehicle Individuals could purchase a personal AV for use in the same manner as 

a traditional personal vehicle. 

Robotaxi/ 

Shared robotaxi 

Robotaxis could provide door-to-door transportation services akin to 

traditional taxi or Transportation Network Company (TNCs, e.g., Uber 

and Lyft) services. Robotaxis could be summoned on-demand and paid 

for via either subscription models or on a per-trip basis. In some cases, 

rides could be shared by multiple passengers (e.g., UberPool, shared Lyft 

rides). 

Autonomous public transit Autonomous buses could replace traditional buses. These buses could be 

traditional 40ft buses or custom-built shuttle buses that fit 8-10 

passengers.  

Autonomous trucks Autonomous trucks could perform the long-haul portion of trucking 

routes. Multiple trucks could travel together as part of a “platooning” 

formation.  

Delivery robots Smaller autonomous vehicles would operate on sidewalks or local streets 

to deliver goods including packages, groceries, and prepared food. 
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1.3 Potential Impacts of Autonomous Vehicles 

When (or if) AVs become widespread, they are predicted to yield a variety of 

safety, environmental, economic, equity, and labor impacts. Uncertainty exists, however, 

regarding the types and extent of these impacts. Like many other AI technologies, AVs 

promise performance improvements. A prevailing narrative about AVs is that they will 

dramatically improve road safety by eliminating human error (Stilgoe, 2021). Yet some 

researchers note that AVs would need to be able to handle greater than 99.99% of 

scenarios they encounter to be comparable to an average human skilled driver, a standard 

beyond the current capabilities of AVs (and perhaps an impossible standard to ever 

achieve) (Shladover, 2018). From an environmental perspective, AVs could increase fuel 

efficiency via vehicle platooning, curb the need for personal car ownership, decrease 

traffic, and reduce the amount of space needed for parking (Williams et al., 2020a). Such 

benefits could be offset, however, by induced travel demand, greater urban sprawl, 

competition with transit, and the creation of “ghost traffic” from empty vehicles circling 

cities to avoid parking fees (Appleyard & Riggs, 2017; Creger et al., 2019; Milakis et al., 

Figure 01-1: AV demonstration and testing projects, and commercial AV deployments. 
Based on data reported to the National Highway Traffic Safety Administration’s AV 
TEST Initiative as of June 2024. 
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2018; Milakis & van Wee, 2020).  

As one group of researchers asks, who might be the winners and losers in an AV 

future (Cohen et al., 2020)? The history of transportation in the United States, and 

emerging problems with AI technologies, show us that the introduction of new 

technologies can yield an uneven distribution of benefits and burdens. Absent equity-

oriented policy interventions and design decisions, AVs may mean transportation 

“heaven” for some, and “hell” for others. AVs could open up new mobility pathways for 

low-income, car-less individuals and low-mobility populations, including elderly 

individuals and people with disabilities (Creger et al., 2019; Steckler et al., 2021). This 

promise of increased mobility, however, is contingent upon multiple design factors 

including avoiding financial and physical barriers that might preclude AV use by 

different communities (Milakis & van Wee, 2020; Steckler et al., 2021). AVs could also 

impact transportation equity via potential competition with transit. Transit systems have 

already had to reckon with competition from ride-hailing services that offer greater 

flexibility and convenience than many transit options (Breuer et al., 2020; Cats et al., 

2022; Dong, 2020; Gehrke et al., 2019). If vehicle automation enables significant price 

decreases and increased availability for ride-hailing services, some fear that it could 

undercut public transit, which is one of the most equitable and environmentally 

sustainable modes of transportation (Creger et al., 2019; Williams et al., 2020b).  

As with past automation technologies, potential job loss due to AVs is a key area 

of concern (Cohen et al., 2018; Hilgarter & Granig, 2020; Norton et al., 2021). One 

recent study estimated that vehicle automation could eliminate 1.3 to 2.3 million workers’ 

jobs over the next 30 years (Groshen et al., 2018). These job losses may or may not occur 
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alongside the creation of new jobs within the AV industry and increased employment 

opportunities outside of the industry via improved transportation accessibility (Farooque 

et al., 2021; Leonard et al., 2020; Steckler et al., 2021; Williams et al., 2020b). One 

cannot, however, evaluate these employment losses and gains as a one-to-one trade. 

Though past automation technologies have, on net, created more jobs than they have 

eliminated, newly created jobs were typically polarized into low and high-paying jobs 

(Autor, 2015; Bessen, 2016; Goos et al., 2014). In line with this trend, Viscelli (2018) 

found that, absent proactive policy intervention, vehicle automation will likely eliminate 

high- and mid-wage trucking jobs, while creating low-quality driving jobs.  

Yet AI systems, like AVs, represent a new form of automation that impact not 

only routine—and therefore easily programmable—tasks, but also more complex, non-

routine tasks. AVs thus serve as a valuable domain in which to explore how AI 

technologies might directly and indirectly impact the future of work. AVs could, like 

prior automation technologies, induce job polarization, creating a misalignment between 

the skillsets of individuals who lost their jobs the skill requirements for newly created 

roles (Steckler et al., 2021; Williams et al., 2020a). Occupations that involve driving as a 

secondary activity such as waste management providers or home health aides might also 

see their associated labor roles evolve (Beede et al., 2017). Even typical driving 

commuters might see work seep into their transportation routines as driving time is 

converted to additional working time (Milakis et al., 2018).  

The full extent of AV labor impacts will unfold over time. In the meantime, U.S. 

robotaxi services offer an opportunity to explore how AVs are reshaping taxi work 

systems. The following chapter further unpacks these dynamics. 
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Chapter 2: Mapping the AI-Enabled Transformation of Labor in Taxi Services by 

Autonomous Vehicles 

 

In this study, we examine how the introduction of autonomous vehicles to a taxi 

work system reshapes tasks and frontline labor roles. This chapter is based on Kaplan et 

al. (2024), a conference paper accepted to the ILR Review “Artificial Intelligence and the 

Future of Work” conference. 

 

2.1 Introduction 
 

Advances in artificial intelligence (AI) are transforming how automation can 

interact with and change human labor. AI-enabled automation technologies can now 

perform more complex tasks which extend into the realm of what were previously 

considered uniquely human abilities. Unlike repetitive physical tasks that have undergone 

substantial substitution with automation technologies, non-routine manual tasks have thus 

far remained largely unaffected by automation. Emerging AI-enabled technologies, 

however, are finding success at taking on complex physical tasks, threatening the jobs of 

workers who currently perform them.  

In light of these advancements, some voices now claim that AI will soon be able 

to perform all jobs and displace workers across nearly every sector. Past technological 

revolutions, however, have not eliminated work and workers wholesale but rather have 

transformed labor and work in more complex ways. Further, how technologies perform in 

constrained development settings is often quite different from how they exist within, 

shape, and are shaped by actual work systems and interaction with the physical world. 

This period of AI-induced change calls for careful consideration of how AI is actually 

transforming work and the workforce in-context. As technologies change, moreover, 
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researchers must refine their analytical tools such that they capture the important features 

of these technology-induced transitions and their resultant labor outcomes. 

In this study, we examine how the introduction of autonomous vehicles to a taxi 

work system reshapes tasks and frontline labor roles. We perform an inductive, 

comparative analysis of taxi and robotaxi work systems, treating the two types of systems 

as cases of conditions prior to and following the introduction of AI technologies to a taxi 

work system. Drawing on government occupation data, direct observations, semi-

structured interviews, and archival data, we identify tasks and labor roles for each work 

system and perform a granular mapping of how each of the roles and the 190 identified 

tasks changes. While prior studies have hypothesized about AI-induced rebundling of 

tasks and reorganization of adjacent labor roles, we empirically demonstrate this 

phenomena for a work system oriented around a non-routine manual task and add nuance 

to these processes, identifying three archetypal patterns of change.  

Autonomous vehicles (AVs) are one of a number of emerging AI-enabled 

technologies being developed to perform non-routine manual tasks. Relatively few 

studies have examined this task category, as past automation technologies were ill-

equipped to complete such tasks. Tasks like driving, which require dexterity, physical 

skills, mobility, and awareness of the physical context, have historically had limited 

opportunities for substitution or complementarity with automation technology (Autor et 

al., 2003; Brynjolfsson & Mitchell, 2017). Yet the promise (realized or not) of safety 

improvements, cost savings, and solutions to labor shortages is pushing use of AI-enabled 

technologies into this realm, demanding research on their labor impacts. While prior 

scholarship has largely focused on use of AVs in the trucking sector (Gittleman & 
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Monaco, 2020; Levy, 2022; Viscelli, 2018), this study is the first to investigate changes 

to work in the passenger transportation space, driving scholarship forward as robotaxi 

services expand into cities around the world, and offering insights for other types of AI 

technologies designed to perform non-routine manual tasks. 

 

2.2 Prior Literature 

 
Prior scholarship offers different perspectives on automation and labor based on 

analyses performed at the task-, role-, sector-, and economy-level. Each of these 

perspectives captures various elements of interest and all are sensitive to the researchers’ 

selected boundaries of analysis.  

At the task level, researchers have sought to define types of tasks in different 

work systems. Autor et al.’s (2003) Routine-Biased Technical Change (RBTC) theory 

categorized tasks across two dimensions: routine versus non-routine, and analytic or 

interactive versus manual. Numerous other studies have proffered revisions to these 

categories or proposed alternative approaches for their operationalization (see Sebastian 

and Biagi (2018, p. 24) for a review). In a 2020 report, Fernández-Macías and Bisello 

argued that task categorizations must capture not only the content of a task, but also the 

methods and tools of the work, features which they integrate into their taxonomy of tasks 

(2020, p. 8). Motivating this effort to categorize tasks is the desire to understand why 

substitutions of labor with capital might occur (Acemoglu & Restrepo, 2018, 2019; Autor 

et al., 2003; Combemale et al., 2021) or, more typical within the engineering literature, to 

develop guidance on what tasks should be performed by an automation system based on 

performance consequences (Fitts, 1951; Parasuraman et al., 2000). Task typologies are 
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also commonly deployed to predict impacts of technology introduction at the role level. 

Role-level analyses commonly ask whether a worker might be replaced by, or 

work with, a new technology. To that end, RBTC posits that automation largely 

substitutes for workers that perform routine tasks and complements those that perform 

non-routine tasks (Autor et al., 2003). Assuming that jobs with more automatable tasks 

are more likely to be automated, Arntz et al. (2016) estimated that 9% of jobs across 21 

OECD countries were automatable. Frey and Osborne (2017) offered a significantly 

higher estimate that 47% of U.S. jobs were at risk of automation. AI is expected to 

significantly broaden the number of tasks that could be performed by automation 

technologies, leading some researchers to offer even more dramatic conjectures about 

substitution effects. Huang and Rust (2018) went so far as to assert that AI will 

eventually be able to perform all types of tasks and that AI technologies present a 

fundamental threat to human employment.  

Some researchers have chosen to measure role-level impacts in terms of exposure 

to AI without equating that exposure to job loss. Felten et al. (2021) developed their 

measure of AI exposure based on the abilities on which different occupations rely. Using 

this measure, Felten et al. (2023) found that highly-skilled, highly-educated white-collar 

workers are most likely to be exposed to generative AI technologies. Eloundou et al. 

(2023) measured exposure based occupational tasks and estimated that approximately 

80% of U.S. workers could have at least 10% of their work tasks affected by large 

language models. Brynjolfsson et al. (2018) similarly developed a suitability for machine 

learning index based on tasks and found that most occupations include at least some tasks 

that are suitable for substitution with machine learning, though few occupations would be 
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fully automatable.  

At the sector or economy-level, researchers have sought to predict impacts to job 

numbers and worker wages and skills. Acemoglu and Autor (2011) found that automation 

led to job polarization and shifted demand towards more educated workers in the United 

States and other advanced economies, though Goos et al. (2014) identified offshoring as 

an additional contributor to the trend. Bessen (2016) also noted that automation can 

decrease prices and induce demand, resulting in a net increase in jobs. Even if more jobs 

are created at the sector or economy level, firm-level automation can increase the 

probability that workers will leave their employers (e.g., via early-retirement) and 

experience cumulative wage loses (Bessen et al., 2019).  

In addition to these more categorical approaches, a rich body of literature has 

examined the labor impacts of technological change through context-driven work system 

approaches. These studies, based out of the sociology and industry studies traditions, 

have offered additional insights as to how technologies and work system co-evolve 

(Doellgast & Wagner, 2022). A 2017 report from the National Academies of Sciences, 

Engineering, and Medicine noted that prior ethnographic research has demonstrated how 

“a variety of new technologies have altered the way work is performed, the roles that 

workers play in a firm’s division of labor, and the way these changing roles alter the 

structure of organizations” (NASEM, 2017) (p80). These studies reveal that technology 

may impact work systems in ways other than substituting or complementing workers. 

Importantly, how these changes unfold can impact job quality and workers’ experiences 

(Litwin et al., 2022; Moradi & Levy, 2020; Sheehan & Le Dantec, 2023).  

As with prior technology introductions, emerging AI technologies are expected to 
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reshape tasks performed by workers, spur reorganization of jobs, and alter production 

processes (Autor, 2022; Bresnahan, 2021; Brynjolfsson et al., 2018). Recent context-

driven studies have begun to examine AI technology effects on work systems in multiple 

industries, including hospitality and tourism, retail, food retail, healthcare, transportation, 

and warehousing (Ivanov et al., 2017; Litwin et al., 2022; Sheehan & Le Dantec, 2023). 

Litwin et al.’s (2022) forum on emerging technologies identified a number of cross-

cutting themes for types of impacts. Two of the themes highlight changes to work that 

may be missed by task and role-level analyses that are focused on individual worker-

technology interactions, and by economy-level analyses that only capture net job growth 

or losses: 1) automation often involves substituting one worker for another, and 2) 

automation may offload work onto the user or customer.  

As we enter into “the Era of AI uncertainty” (Autor, 2022, p. 18), researchers 

need to leverage context-driven work systems approaches to enhance understandings of 

AI technology impacts and refine their measures of these impacts at various levels of 

analysis. To that end, this study employs a work-systems approach to investigate AI 

impacts on a taxi work system, capturing changes to tasks, roles, and interactions 

between workers and technology. 

 

2.3 Technological and Organizational Context 

 
Forms of vehicle automation are already present in many individually-owned 

passenger vehicles, including features such as automatic breaking and lane departure 

warnings. These features represent lower levels of automation, commonly classified as 

Advanced Driver Assistance Systems (ADAS). The term autonomous vehicles (AVs) 
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generally refers to vehicles at higher levels of automation, those in which an automated 

driving system consisting of sensors and computing equipment is fully responsible for the 

driving task, at least under specified operational conditions (SAE, 2021). A number of 

firms are currently developing AV systems for commercial applications with the intent to 

fully substitute (i.e., remove) human drivers. The most commonly discussed reason for 

this substitution is to improve system safety by theoretically eliminating human error 

(NHTSA, 2024). AV systems might also decrease operating costs by reducing labor 

expenditures (Bösch et al., 2018; Compostella et al., 2020; Kaplan, Nurullaeva, et al., 

2024). 

As with other sectors, there is significant concern that AI-enabled vehicle 

automation could lead to substantial job loss. Groshen et al. (2018) estimated that vehicle 

automation could eliminate 1.3 to 2.3 million workers’ jobs over the next 30 years. Of 

these losses, the majority are expected to occur within the transportation and warehousing 

sectors (Beede et al., 2017). While startling, there is reason to suspect these estimates 

may be overstated. In the long-haul point-to-point trucking sector, for instance, Gittleman 

and Monaco (2020) found that job losses would likely be much lower than prior 

predictions (300,000 to 400,000 job losses compared to millions of job losses). The gap 

between their estimate and prior studies’ estimates is largely attributable to Gittleman and 

Monaco’s differentiation between different types of trucking work and regulatory 

influences within different market segments that employ truck drivers. As Viscelli (2018) 

notes, future regulation could play a pivotal role in what types of trucking jobs are 

eliminated or enhanced in an AV future.  

Gittleman and Monaco (2020) also call attention to the importance of tasks that 
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truck drivers perform besides driving. Truck drivers do more than operate their vehicle, 

just as bus operators perform a range of tasks as part of their role (Machek et al., 2018). 

Some of these tasks tie to systems of care that are embedded in our current mobility 

systems (Stayton & Cefkin, 2018). Replacing these additional tasks with automation 

technologies presents a non-trivial challenge for AV developers. Despite this challenge, 

AV development has continued and has recently seen the greatest momentum in the 

realm of robotaxi services.  

Though far from the level of ubiquity promised by AV firms a few years ago, 

robotaxi services are commercially available in a limited number of U.S. cities and other 

locations around the world, allowing members of the general public to ride in these 

services as fare-paying customers. Alphabet-backed robotaxi firm Waymo recently 

expanded its robotaxi service operating area from parts of San Francisco and Phoenix to 

Los Angeles, with planned expansion into Austin in late 2024 (Waymo, 2024). These 

services operate in a similar manner as existing on-demand passenger transportation 

services (e.g., taking a taxi or an Uber), though are limited to specific geographic areas 

and, in some cases, limited service hours. Riders download a robotaxi company’s app, 

input their desired destination, and are matched with a vehicle that transports them to 

their destination (within the service area).  

For each city in which they operate, robotaxi firms have a depot in which the AVs 

are stored and receive general maintenance services. Some depots include equipment like 

that of an automotive mechanic shop so that the firms’ mechanics can perform vehicle 

repairs in-house (Hawkins, 2018). Robotaxi firms also have central command centers that 

oversee operations of their fleets across multiple cities. These command centers house 
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workers that monitor and assist the AVs in a manner similar to air traffic controllers 

(Ohnsman, 2019, 2020). Researchers have speculated about what other new roles may 

arise to support robotaxi services, with the bulk of discourse focusing on the interactions 

between AVs and remote monitors (Cesafsky et al., 2019; Leonard et al., 2020; 

Mutzenich et al., 2021).  

Little is known about other types of workers who directly support these services, 

and how the overall taxi work system might be changing. In this study we ask, how does 

the introduction of autonomous vehicles to a taxi work system reshape tasks and frontline 

labor roles? In doing so, we contribute to theory on how the introduction of AI-enabled 

technologies that can perform non-routine manual tasks can change tasks and roles in a 

work system.  

 

2.4 Methodology 

 

To investigate AI-induced labor changes to a taxi system, we perform an 

inductive, comparative analysis of taxi and robotaxi services in the United States, 

pursuing an inductive approach as inductive studies are better suited for emergent 

phenomena that are poorly understood (Eisenhardt & Graebner, 2007; Szajnfarber & 

Gralla, 2017). Robotaxi services are still developing and our current mixed transportation 

system, which includes both human-driven and AI-driven taxi-type services, offers a 

valuable opportunity to compare two work systems oriented around the same type of 

service. These systems may come to represent distinct eras in our transportation system: 

one primarily human-driven state and another dominated by AI-driven vehicles. 

We select taxi services as our basis of comparison as both taxi and robotaxi 
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services provide on-demand, public-serving, point-to-point transportation services. 

Another similar type of service is ride-hailing (e.g., Uber, Lyft). While fairly equivalent 

from a rider-perspective, the work systems of robotaxi firms and Transportation Network 

Companies (TNCs) like Uber that support ride-hailing services differ quite significantly. 

Robotaxi firms provide transportation as a service, whereas TNCs provide technology as 

a service and classify themselves as technology companies (Dubal, 2017). TNCs’ work 

systems are oriented around developing and maintaining their software platforms rather 

than fleet maintenance and operations. Though consideration of ride-hailing jobs is 

important for understanding the overall labor impacts of robotaxis, ride-hailing work 

systems are not suitable as a direct comparison with robotaxi work systems. We thus 

adopt taxis services as our basis of comparison. 

We investigate changes that occur to a taxi work system due to AV introduction 

through the lens of tasks and roles. In essence, these are the key constructs around which 

we seek to organize our data (Eisenhardt, 1989). Variation exists both between taxi firms 

and robotaxi firms, and amongst different taxi and robotaxi firms. To isolate our concept 

of interest—the allocation of tasks to roles—and compare taxis and robotaxis as distinct 

work system paradigms, we perform our comparative analysis on representative versions 

of the two systems. These representative versions capture the dominant task-role 

architectures for each type of system. By using these representative systems, we control 

for factors like company culture and individual worker characteristics that could 

influence work system organization and task allocation.  

To develop these representations, we first establish definitions for tasks and roles. 

The U.S. Department of Labor’s O*NET database offers standardized definitions for 
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tasks and roles, as well as detailed information for nearly 1,000 occupations (O*NET, 

2024). O*NET is the United States’ primary source of occupational information and its 

data have been used in numerous studies to examine the potential impacts of other AI 

technologies on tasks and occupations (Beede et al., 2017; Brynjolfsson et al., 2018; 

Brynjolfsson & Mitchell, 2017; Eloundou et al., 2023; E. Felten et al., 2021; E. W. Felten 

et al., 2023). O*NET organizes role information by general occupations that cover 

multiple related job titles (e.g., Taxi Driver = Cab Driver, Taxi Cab Driver, and Taxi 

Driver) and defines tasks as “specific work activities that can be unique for each 

occupation” (O*NET, 2024).  

O*NET’s occupation data come from questionnaires fielded amongst workers 

performing that job or from occupation-specific experts (O*NET, 2017). Though this 

approach may work well for established occupations, we are not yet ready to survey 

workers in emergent robotaxi occupations as the relevant survey questions and target 

survey population is yet unknown. To build an equivalent set of standardized occupation-

specific information for the robotaxi system, we conduct direct observations, semi-

structured interviews, and analysis of archival documents.  

Taxi occupations are well-established and both O*NET and academic literature 

offer detailed descriptions of taxi system tasks and roles on which we can draw. We thus 

use a mix of primary and secondary data sources to develop our representative taxi and 

robotaxi systems, reconciling differences between the sources via an iterative analysis 

process that we detail below (see Table 2-1 for a summary of our data sources, additional 

details provided in Appendices A.1, A.2, and A.3).  

We bound our analysis to include only those tasks and roles directly involved in 
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providing the taxi service for a rider, excluding labor involved in robotaxi technology 

development and early algorithm training of AV vision systems (e.g., image labeling). As 

we identify tasks and roles for one case, we iteratively determine whether those tasks and 

roles are equivalent between the cases, or whether they undergo changes. This iterative 

within-case and between-case analysis also helps ensure that we capture all relevant tasks 

and roles. Finally, we map how tasks move between roles after the AV technology is 

introduced, and work to identify and describe patterns of change that occur. Figure 2-1 

provides a visual depiction of our data collection and analysis process. We further 

describe this process in the following sections. 
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Table 2-0-1: Summary of data sources. 

O*NET 

Data & 

Archival 

Documents 

Document Type 

Number of 

Items 

Total # of 

Pages 

O*NET Occupation Information 4 4 

U.S. Bureau of Labor Statistics Data on 

Occupations 3 3 

News Articles Mentioning Frontline Robotaxi Roles 7 64 

AV Firm Public Reports and Petitions 5 168 

Job Postings for Frontline Robotaxi Roles 24 50 

Reports about AV Regulations 4 271 

Supplementary Responses and Documents from 

Interviewees 4 17 

Total: 51 577 

Observation

s 

Observation Type 

Number of 

Observations 

Total 

Duration 

(min) 

Robotaxi rides 13 237 

Observations of robotaxi command center 1 360 

Observations of robotaxi fleet maintenance depot 1 120 

Total: 15 717 

Semi-

Structured 

Interviews 

General Role of Interviewee 
Type of AV 

Deployment 

Number of 

Unique 

Interviewees 

Total 

Length of 

Interview(s

) (min) 

Frontline Worker 
Commercial 

Operations 

6 280* 

Mid-level Manager 5 166 

Senior Manager 5 209 

Operations Manager Pilot Program or 

Government-Run 

Deployment 

3 182** 

Policy/Communication 

Manager 2 278 

AV Operations Expert 
External 

Perspective 

3 131 

AV/Taxi Regulations Expert 3 357 

Taxi Manager 1 30 

Total: 28 1633 

Conferences 

Type 

Number of 

Events 

Event 

Length 

(hrs) 

Academic, industry, and regulatory conferences 

about AVs 2 44 

Conference sessions about AVs at academic and 

regulatory conferences 2 16 

Total: 4 60 

*One 30min interview included a Frontline Worker and a Mid-Level Manager. Interview length counted here. 

**One 64min interview included an Operations Manager and a Policy/Communication Manager. Interview length counted here. 
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Figure 02-1: Data collection and analysis process. 
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2.4.1 Stage 1: Constructing a Comprehensive Dataset of Tasks and Roles 
 

To construct our representative systems for comparison, we collect data on 

robotaxi and taxi system tasks and roles. At present, less than half a dozen2 firms are 

developing and deploying robotaxi services in the U.S. Key elements of robotaxi fleet 

operations are fleet maintenance, remote forms of passenger and vehicle support, and the 

in-vehicle rider experience. As we collect our data, we aim to conduct in-depth probes of 

each of these elements, though doing so at a single robotaxi firm is not possible. We 

instead split our more in-depth probes and data collection efforts amongst multiple firms, 

taking care to make sure our takeaways are representative of the general robotaxi firm 

population.  

 O*NET data and prior academic research has already largely characterized tasks 

and roles for taxi systems. We leverage these data as sources of in-depth information for 

our taxi system representation. As we learn more about robotaxi services, we collect 

additional data on taxi services to refine our taxi representation and to capture details that 

are of particular relevance for our comparison. We include more details on task and role 

identification in the following sections.  

 

2.4.1.1 Robotaxi System Tasks and Roles  

 

To identify tasks and labor roles involved in robotaxi system operations, the lead 

researcher in the study took thirteen rides in a commercially-available robotaxi service 

(twelve rides in one firm’s service and one ride in a different firm’s service), conducted 

                                                           
2 At the time of writing this chapter, four companies in the U.S. were either currently offering or had 

previously offered robotaxi services to members of the public as part of early-rider programs or publicly-

available commercial services. 
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six hours of observation of one firm’s robotaxi central command center, and performed 

two hours of observation of the same firm’s fleet depot between 2022 and 2023. To fill in 

the gaps of potentially missed roles, collect additional task information for identified 

roles, and check for representativeness, the researcher conducted semi-structured 

interviews with AV technical and operational experts (N = 26 semi-structured interviews 

with 27 unique interviewees), each lasting between 30 to 80 minutes. Observations and 

interviews were conducted with approval from George Washington University’s 

Institutional Review Board. Thirteen interviews were conducted in-person, with the 

remainder conducted over Zoom. All interviews for which consent to record was given 

were recorded and transcribed. 

Over half of the interviewees were either current or prior employees of a robotaxi 

company and were able to provide detailed descriptions of their roles and the associated 

tasks. Ten interviewees came from the same firm. Interviewees were selected via 

purposive sampling to capture the different types of frontline roles involved in robotaxi 

services and cover different perspectives (Eisenhardt & Graebner, 2007). Interviews were 

conducted until theoretical saturation was reached for each type of role (i.e., new 

interviewees did not mention any new tasks or labor roles) (Eisenhardt, 1989; Szajnfarber 

& Gralla, 2017).   

In addition to semi-structured interviews and observations, the researcher attended 

academic, regulatory, and industry conferences about autonomous vehicle deployment. 

At some of these conferences, robotaxi firms had their autonomous vehicles on display 

for participants, along with frontline workers from the firm who were available to answer 

general questions, thus offering additional informal opportunities to engage with frontline 
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robotaxi workers. These conversations were not recorded but the researcher took notes 

during the discussions and typed these as additional field notes. 

We triangulate our findings (Yin, 2018) using the observations, interviews and 

archival documents which include job postings, public reports from AV firms detailing 

elements of their operations for regulators, and written responses from AV firms that 

were not directly interviewed. These sources confirm the existence or planned 

development of similar types of roles at the other commercially-available or in-

development (i.e., testing on public roads but not available for public commercial use) 

robotaxi firms in the U.S. and provide additional task information. Interview 

transcriptions, observation field notes, and archival documents are entered into the NVivo 

software for coding analysis.  

We use our collected data to construct standardized task and role entries akin to 

those in O*NET for the robotaxi roles3. To do so, we open-code the interview 

transcriptions, observational notes, and archival documents to generate a list of 

standardized roles and their associated tasks for robotaxi operations. Table 2-2 includes 

one example of this translation process. This process also reveals that a transition point 

exists that significantly impacts what roles exist in the robotaxi system and what tasks 

they perform. This transition points occurs when the technological capabilities of the 

AVs improves such that the onboard operator (i.e., safety driver) can be removed. We 

consequently split our comparison into three representative systems: 1) pre-AI 

technology introduction –Taxi, 2) AI technologies introduced with limited capabilities – 

                                                           
3 We also check how well seemingly related O*NET occupations compare to our identified robotaxi roles 

and find that O*NET entries for jobs such as “Air Traffic Controllers” and “Remote Sensing Scientists and 

Technologists,”  the latter of which includes Unmanned Systems Operators and Drone Operator, 

descriptions do not align with the information from our observations and interviews. 
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Robotaxi, and 3) AI technology capabilities expanded – Advanced Robotaxi.  

2.4.1.2 Taxi System Tasks and Roles 

 

Social, economic, and regulatory forces have changed the structures of taxi firms 

over time (Dubal, 2017; Mundy, 2022). The current landscape of U.S. taxi firms includes 

a variety of organizational structures; some firms have centralized structures and classify 

drivers as employees, whereas other firms have decentralized structures and instead lease 

vehicles to drivers who operate as independent contractors (Cooper et al., 2016; Mundy, 

2011). We assume a centralized taxi firm structure since robotaxi firm structures more 

closely mirror those of a centralized firm. Dubal’s (2017) ethnographic analysis of the 

taxi industry in San Francisco and Cooper et al.’s (2016) book on taxi firm structures, 

roles, and technologies provide detailed information about roles associated with a taxi 

system.  

We leverage the O*NET occupation-specific task4 information for “Taxi 

Drivers,” “Dispatchers, Except Police, Fire, and Ambulance,” and “Automotive Service 

Technicians and Mechanics” to define tasks for the driver, dispatcher, and mechanic 

roles, excluding tasks that do not pertain to the taxi system (e.g., excluded the task 

“Ensure timely and efficient movement of trains, according to train orders and schedules” 

for the dispatcher role). We include a manager role as part of assuming a centralized taxi 

firm structure and include an app role since many modern taxi firms incorporate digital 

technologies to enhance their operations (Cooper et al., 2016). O*NET does not have data 

for taxi-specific managers, nor does it specify tasks performed by technologies. We 

                                                           
4 An alternative approach would be to use O*NET’s Detailed Work Activities (DWA). DWAs describe 

tasks in a more general manner so that they can be compared across occupations. We feel that these more 

general descriptions mask important details for taxi work system change, and indeed find during our 

analysis that these details are valuable for characterizing role changes.   
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instead used archival data and a supplementary interview with a manager of a taxi firm to 

identify the tasks performed by taxi managers and apps. We note that the work of 

managers can vary significantly between firms, between types of managers, and by level 

of management. We focus specifically on managerial tasks related to coordinating work 

with frontline employees, managing worker performance, and developing standard 

operating procedures, tasks which we find are reallocated to emergent specialized roles in 

the robotaxi system. 

As we learn about roles and roles for the robotaxi system, we check whether these 

roles exist within a typical taxi service5 and revise our taxi system representation 

accordingly. We also leverage supplemental data sources to highlight the differences in 

roles that might exist for both the taxi and robotaxi systems. Differences between taxi and 

robotaxi mechanics are derived, in-part, via comparison of course requirements for a 

traditional vehicle mechanic training program with those of an AV mechanic training 

program (De Anza College, 2024). Distinctions between the functions of a non-

autonomous vehicle and a robotaxi vehicle are extracted from a technical document 

detailing differences in vehicles with varying levels of automation (SAE, 2021). 

 

2.4.2 Stage 2: Determining equivalency of tasks and roles to track changes 

 

We further reconcile our task and role lists for our taxi and robotaxi systems 

through an additional analysis step, matching up tasks and roles between our constructed 

lists. During this matching process, we find that some of the O*NET taxi tasks 

                                                           
5 We do not claim that roles excluded from the taxi system that appear in the robotaxi system do not exist at 

any taxi firm, but rather the role may not be common for a taxi service.  
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correspond with multiple tasks from our developed robotaxi list. In some cases, we 

combine our robotaxi tasks to align with the O*NET task generality. For certain 

instances, however, we find that the additional granularity for the robotaxi tasks is 

necessary in order to properly reallocate tasks between roles or because the granularity 

captures a fundamental difference in the way a role might perform a given task (e.g., a 

human versus an AI system driving). For eight of the “Taxi Drivers” O*NET tasks, we 

split the task into two separate tasks, finding that the O*NET task captures distinct tasks 

that are performed by different roles in the robotaxi system or that a portion of the task is 

eliminated in the robotaxi system. We check all matches that are unclear against our data 

and discuss them amongst the research team until consensus is reached.  

The matching process also surfaces tasks that are not included in the O*NET data. 

We conduct an additional interview with a Senior Manager at a taxi firm to verify the 

existence, or lack thereof, of those tasks in the taxi system, and check some of the task-

role pairings for which the research team is uncertain. If the task exists for the current 

taxi system, we add it to our list of taxi tasks. If the task does not exist, we consider it a 

new task. We also check a subset of the robotaxi tasks with prior interviewees from 

robotaxi firms to ensure proper task-role allocation. Through this iterative checking and 

refining process, we develop a data frame of 190 tasks with information on which role or 

roles performs each of the tasks in the taxi, robotaxi, and advanced robotaxi systems. 

Table 2-2 presents examples of research decisions made during the matching process. 

Though the cases incorporate different data sources, our process leverages the strengths 

of O*NET data while using additional sources to develop a more comprehensive picture 

of the work systems for our cases. Moreover, the iterative nature of our process 
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converges the cases into an equivalent basis of comparison to support the remainder of 

our analysis.  

 

2.4.3 Stage 3: Mapping how tasks move between roles and identifying 

patterns 

 

We use the R programming language (R Core Team, 2024) and the ggsankey 

package (Sjoberg, 2021) to create Sankey diagrams that visually map task movement 

between roles across the three work systems. These diagrams show roles as nodes and 

tasks as flows. An initial Sankey diagram of the overall work system (Figure 2-2) is 

chaotic and difficult to interpret. To improve interpretability, we analyze changes at the 

role level. 

By constructing Sankey diagrams for individual roles, we identify preliminary 

patterns and group roles accordingly: 1) flows branching out from a single role, 2) flows 

converging into a single role, 3) flows moving in and out of a role (further subdivided 

into sub-groups), and 4) roles with minimal flows. We then investigate why tasks shift 

between roles and why some roles appear unchanged, which could indicate either 

minimal between-system changes or missing task information.  

To explore these patterns, we open-code each task movement (331 total) to 

develop a typology of task changes and categorize changes to each role’s tasks (e.g., 

“reassignment and sharing” describes a task moving from one role to multiple roles that 

share the task, as occurs for the task “interacts with first responders.”). Using the detailed 

task-level analysis and individual Sankey diagrams, we write memos on each role’s 

changes. Our guiding questions include:  



31 
 

 From which role(s) do most of its tasks originate? 

 To which role(s) does it distribute its tasks?  

 Does the role mostly retain or redistribute its tasks? 

 Does it share any tasks and does that change? 

 When tasks are redistributed, how similar is the absorbing role to the original 

role? 

This analysis helps us determine whether visually similar Sankey diagrams reflect similar 

patterns of change and if visually dissimilar diagrams mask similar underlying changes, 

signaling a special case of a general pattern. The most challenging patterns to disentangle 

are those involving branching in and out of a role. We experiment with different 

groupings and test them against our data to see if they can be described parsimoniously. 

Groupings that do not meet this standard are dissolved. Through iterative memo writing, 

role sorting, and author discussions, we refine our patterns, constantly comparing them 

with our data to ensure a close fit (Eisenhardt, 1989).  

In the following section, we present the visual maps that depict how the 

introduction of autonomous vehicles to a taxi work system reshapes tasks and labor roles, 

and how this rebundling occurs via identifiable patterns. We also discuss the general 

function of frontline roles in the robotaxi system offer preliminary insights into the 

sociodemographic makeup of the emerging frontline robotaxi workforce.  
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Table 2-0-2: Examples of data analysis processes. 

Process O*NET Task 

Open-

coding 

Task(s) Quotes Firm Role 

Task and 

role 

identificatio

n from data.  

 

Task 

performed 

by different 

role in 

Robotaxi 

and 

Advanced 

Robotaxi 

systems.  

 

Matching 

O*NET task 

to open-

coding task.  

 

Vacuum and 

clean interiors 

and wash and 

polish 

exteriors of 

automobiles. 

(O*NET, Taxi 

Driver) 

Perform 

vehicle 

cleaning 

and 

detailing 

"We'll clean the cars every day. 

Yeah, I mean, the driverless 

ones...we'll clean the cars every 

day inside and out. Use a, you 

know, the gen-seven disinfectant 

on anything inside of the car..." 

(Interview with Frontline Worker, 

August 10, 2023) 

Firm A Field 

Support 

"Yeah, so they [the AVs] were 

cleaned every day. Because 

they're being cleaned every day, 

it's kind of minimal work, because 

not too much ever accumulates in 

the cars. Maybe once a month 

they do like a vacuum clean, and 

that was always done by the 

[operators] themselves." 

(Interview with Mid-Level 

Manager, January 3, 2023) 

Firm B Operator 

"The [operator] is also responsible 

for cleaning the vehicle. They 

don't do a big cleaning everyday 

but more as-needed. They check 

the vehicle cleanliness as part of 

their daily checks." (Interview 

notes for interview with Frontline 

Worker, October 26, 2022 

10/26/22, no consent to record) 

Firm F Operator 

Matching 

multiple 

open-coding 

tasks to one 

O*NET 

task. 

 

Dividing 

O*NET task 

(task split at 

ellipses). 

 

Identifying a 

task that is 

eliminated. 

Pick up 

passengers at 

prearranged 

locations… 

Confirm 

identity of 

rider 

"So it's [the vehicle] sort of built 

for autonomy and for mobility as 

a service...there's an integrated 

tablet in the back so that you can, 

you know, scan your QR code to 

make sure it's the right person 

getting in the right vehicle." 

(Interview Operations 

Management Official, October 

18, 2022) 

Public 

sector  

Vehicle 

Alert 

passenger 

of arrived 

vehicle 

location 

"The Waymo app also allows 

riders to prompt their Waymo AV 

to emit a distinctive chime sound 

or to honk the vehicle’s 

horn...This functionality helps 

riders identify and find their way 

to their vehicle using sound." 

(Waymo Passenger Safety Plan, 

January 2024) 

Waymo* Vehicle & 

App 

...at taxi 

stands, or by 

cruising streets 

in high traffic 

areas. 

N/A 

(robotaxis 

are hailed 

via apps) 

"Ready to move with May 

Mobility? You’re almost there—

just download the May Mobility 

app on the Apple App Store or 

Google Play and the app’s 

prompts will guide you through 

the rest." (May Mobility Website, 

2024) 

May 

Mobility* 

Eliminated 

Task 
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Table 2-2 (cont.) 

Process O*NET Task 

Open-

coding 

Task(s) Quotes Firm Role 

Identifying 

new task. 

N/A  Perform 

pre- and 

post-trip 

systems 

checks  

“They [field support agents] have 

a checklist, as simple as you can 

think of where they're walking 

around the vehicle, making sure 

the quality of vehicle—we don't 

want to send a car out that has a 

massive dent or a broken mirror, 

you know, from a brand 

perspective and safety 

perspective. But they're looking at 

the physical aspects of the 

vehicle. And then there's a 

number of technical things they 

are checking…” (Interview with 

Senior Manager, August 10, 

2023) 

Firm A Field 

Support 

“…we had another team that 

handled like, setting up the cars 

for us. So they would like in the 

mornings, they [field support 

agents] would start up the cars, 

because it has to go through some 

procedure, like software, like 

when you turn on your 

computer…they have to turn it 

on, they have to like run tests, 

they have to make sure there's no 

issues.” (Interview with Frontline 

Worker, September 30, 2023) 

Firm B Field 

Support 

“…the [operators] are responsible 

for like kind of pre and post 

service vehicle checks. You 

know, so like before they take 

their vehicle out, they run through 

a checklist of things to make sure 

that it's ready to go.” (Interview 

with Operations Management 

Expert, October 18, 2022) 

Firm F Operator 

*Firm names provided because sources are public and the quotes are easily searchable. Adding the 

anonymized name would thus risk de-anonymizing the other data. 

 

2.5 Mapping the Impact of AVs on Tasks and Roles 

Figure 2-2 depicts how the 190 identified tasks move between labor roles as the 

work system transitions from Taxi to Robotaxi, and finally to Advanced Robotaxi. Sankey 

diagrams often depict the movement of materials between processes. In Figure 2-2, 

rectangular nodes represent roles and flows depict the movement of tasks between roles 

(line thickness proportional to the number of tasks). To better interpret the figure, 
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consider the task “test vehicle equipment.” This task is performed by drivers in the Taxi 

system, operators in the Robotaxi system, and field support agents in the Advanced 

Robotaxi system. This task thus represents one portion of the teal line that flows from 

driver to operator and a portion of the pink line that flows from operator to field support.  

Less intuitive are the “new tasks” and “eliminated tasks” nodes on the diagram. 

New tasks indicates tasks that are introduced in the following state. Consider the task 

“offload vehicle data.” Traditional taxi vehicles do not need to have data from sensors 

manually offloaded but operators must perform this task for robotaxi vehicles. When the 

operator role is eliminated, field support agents perform this task. Thus, the task 

represents a portion of the gray line flowing from new tasks to operator, and a portion of 

the pink line flowing from operator to field support. Similarly, the node labeled 

eliminated tasks absorbs tasks that were performed in the previous state but are no longer 

performed by one of the roles. For example, drivers perform the task “collect vouchers 

from passengers and make change” in the Taxi phase, but no roles in the Robotaxi or 

Advanced Robotaxi systems perform this task. That task is captured by a portion of the 

teal line flowing from driver to eliminated task, and a portion of the gray line that flows 

from eliminated tasks to eliminated tasks (i.e., remains eliminated). 
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Interpreting these role changes is difficult absent an understanding of the general 

purpose of each of the frontline roles. We assume a general level of familiarity with taxi 

system roles and describe the emergent frontline robotaxi roles in the following section, 

drawing comparisons between the taxi and robotaxi roles when relevant. 

2.6 Frontline Labor Roles in Robotaxi and Advanced Robotaxi Systems 

What are these frontline roles and who fills them? Many of the robotaxi frontline 

roles do not exist in typical taxi systems, and those that do have changed to varying 

degrees. We describe these roles below and provide preliminary insights regarding the 

types of individuals filling these roles, their training requirements, and their 

compensation levels6.  

                                                           
6 These descriptions are based on our limited sampling of the current industry. We encourage further 

Figure 02-2: Tracing flow of tasks between roles. 
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2.6.1 Mechanic 
 

Robotaxi mechanics, like traditional taxi mechanics, perform vehicle repairs and 

maintenance. They also need expertise in software and computing systems for the AV 

technologies. Some AV firms have partnered with community colleges to develop AV-

specific mechanic training programs (De Anza College, 2024), and robotaxi mechanics 

typically receive in-house training on their company’s technologies. A Senior Robotaxi 

Maintenance Department Manager equated this training to specialized trainings that 

mechanics at dealerships might receive:  

…there's a process that they go through as they would with any other shop, 

whether they were becoming like a Master Technician at a Honda dealership, you 

know. We have our own process for how we train them and how we certify them 

and how they grow within the company (Interview, August 10, 2023).  

 

The same manager explained that, in some cases, AV firms have recruited individuals 

from software engineering backgrounds and trained them on traditional vehicle repair 

procedures. The vehicle mechanic industry has historically been male-dominated, though 

women are increasingly entering the field (Data USA, 2021). Currently, the emerging AV 

mechanic industry reflects a similar makeup.  

 

2.6.2 Manager 
 

Like taxi managers, robotaxi managers develop standard operating procedures, 

coordinate information and responsibilities, and evaluate workers. Some of this 

evaluation focuses on how workers interface with the AVs. Managers provide guidance, 

for instance, on when onboard operators should takeover and manually navigate the 

                                                           
investigation into the demographics of workers filling these roles, their compensation levels, and their 

individual experiences.  
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vehicle through a situation versus allow the vehicle to handle the situation independently. 

One former operator described this evaluation experience:   

Another aspect of it is you have one-on-ones, with your manager. So during those 

one-on-one meetings…you would go over like your dash cams. And you would 

go over your takeovers, if you were…driving in autonomous, auto, we call it. If 

your takeover was a good takeover, or if you should have just let the car play out 

that situation. (Interview, September 30, 2022) 

 

Some robotaxi managers collect feedback on the AVs’ software performance from the 

operators and convey this information to the engineers developing the AV systems. As 

with traditional taxi managers, robotaxi managers bring several years of experience into 

their roles, and most have at least a Bachelor’s degree (Job postings). Robotaxi firms 

recruit individuals with extensive experience in operations, fleet management, logistics, 

and transportation management for these positions, suggesting that similar types of 

individuals are filling managerial roles in both taxi and robotaxi systems. 

2.6.3 General Profile & Compensation: Operator, Remote Monitor, Customer 

Service, Field Support 
 

No single profile appears to exist for the operator7, remote monitor, customer 

service, or field support roles. One Senior Manager who estimated having been involved 

in hiring around 3,000 employees for his robotaxi firm describes the frontline workforce 

as follows:  

…the background and the profile of people that have come through these roles is 

quite varied. I mean, we have like very early career people, we have students, we 

have, you know, middle career, late career. We've actually had folks that, it's 

probably not the norm, but folks that had been retired and they're like, you know, 

early retirement and they’re like, “hey, this stuff is amazing. Like I just want to 

come get involved.” So it's really hard to put a finger on it. (Interview, December 

27, 2022) 

 

                                                           
7 Early in the industry, some robotaxi firms hired professional drivers as operators (Interview with Former 

Operator, November 8, 2022). 
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Observed and interviewed frontline workers varied in terms of age, gender, and racial 

background, and described having prior employment in sales, retail, food service, and 

“Corporate America” as well as gig work as ride-hailing drivers (Interviews on October 

18, 19, 26, 2022; Observations on July 7, October 25, 2022, August 9, 2023). These roles 

require a high school diploma or equivalent, and roles that interface with the vehicle 

directly or indirectly require a valid driver’s license, a minimum of three years of driving 

experience, and a clean driving record (Job postings). Many robotaxi companies use 

contractor firms to hire and directly manage these workers as a contingent labor force, 

with some firms offering the opportunity to convert to employee status over time 

(Interviews November 8, 2022, December 27, and August 9, 2023). These roles earn 

slightly higher wages than current taxi drivers and dispatchers who earn mean hourly 

wages of $16.88/hr and $17.05/hr, respectively (Bureau of Labor Statistics, 2023b, 

2023a). Job postings for the robotaxi roles list hourly wage ranging from between $18-

$26/hour, with one firm even offering a wage of $34/hour for an operator role in 

California (Job postings).  

 

2.6.4 Operator 
 

Operators serve as backup or safety drivers in case of failures with the AV, and 

their presence required for robotaxi testing or deployment in some cities (Written 

Interview Supplement from AV Regulatory Expert, February 15, 2023). Operators do 

more than simply fulfill a regulatory requirement; they carry out many of the vehicle-

support tasks previously performed by taxi drivers like refilling the gas. Depending on 

the firm, some operators receive customer service training including “customer service 
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techniques, how to answer questions, [and] how to talk about the software 

without…breaking your confidentiality agreement” (Interview with Frontline Worker, 

September 30, 2022). At other firms, operators are instructed not to speak to passengers 

in order to simulate the “driverless experience” (Observation and Informal Conversation 

with Operator, July 8, 2022). By instructing operators to remain silent, firms are working 

to shift the relational practices previously performed by drivers (L. D. Cameron, 2022) to 

remote roles.  

Operators also play an active role in evaluating AVs’ performance, taking notes 

on their areas of failure. Early on in the technology development process, firms typically 

have two operators onboard each AV to manage operator fatigue and facilitate data 

collection efforts (Interview with Senior Manager, August 10, 2023). Some firms’ 

appreciation of operator feedback has increased over time. One firm changed the name of 

its operator role to highlight the active, rather than passive nature of the role:  

[Operators] used to be called Fleet Attendants. We changed the role name in line 

with responsibilities added to the position to help us get a better understanding of 

what is happening on the roads. [Operators] are more technical and able to help 

guide potential autonomy improvements. (Written supplement from AV firm, 

December 1, 2023)  

 

Operators receive both in-classroom training and multiple weeks of shadowing training 

for their role.  

 

2.6.5 Remote Monitor 
 

Remote monitors perform real-time (though not continuous) monitoring of the 

autonomous vehicles. These roles do not remotely drive the vehicles but instead provide 

secondary verifications for the AVs and can perform a limited number of vehicle 
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maneuvers remotely. One Senior Manager explained:  

…when the car gets into a situation where it's, say, maybe less familiar, or wants to 

double check something, a human behind a terminal can take a look at what the car 

is seeing, and sort of answer some questions for it to let it continue to operate...[the] 

expectation is to have these calls answered within like, a couple seconds. So 

basically, instantly, the scene comes up on the terminal in front of the [remote 

monitor]. These are central roles. They have access to all the cameras that are 

functioning in the car plus an overlay of LiDAR8 data. They have really strong 

situational awareness, and they'll help confirm the scene for the car, basically, and 

then the car is still driving itself, it continues on through the situation. (Interview, 

December 27, 2022) 

 

Many of the remote monitors started as operators and understand the functionality 

of the AVs. As robotaxi firms have expanded their fleets, they have exhausted their 

ability to recruit from their operator worker supplies and have begun to directly hire for 

the remote monitor role. Firms perform internal trainings for remote monitors, built 

around their bespoke technologies. These trainings include in-classroom instruction and 

multiple weeks of shadowing, both of which include regular testing and knowledge-

checks. Through these trainings, remote monitors develop the technical skills to navigate 

“customized tools that they [the firms] build to interact with the AVs” (Interview with 

Mid-level Manager, September 26, 2023). New remote monitors are limited in the types 

of maneuvers they are allowed to perform with the AVs, and gain increasing 

responsibilities and abilities to perform more complex maneuvers over time.  

 

2.6.6 Customer Service 
 

Customer service agents have adopted many service tasks that were previously 

performed by taxi drivers and dispatchers. These tasks include answering rider questions, 

                                                           
8 LiDAR is a type of vehicle sensor that helps to create a three-dimensional detailed map of the AV’s 

surroundings. 
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issuing safety reminders (e.g., buckle your seatbelt), and managing rider behavior. This 

role serves as a critical interface between the passengers and the AV technology, helping 

to explain seemingly irregular vehicle behavior to riders and checking on passenger 

wellbeing. One AV firm’s Passenger Safety Plan explains: 

Waymo anticipates that a rider may experience a medical event (e.g. intoxication 

that renders a rider unresponsive or other health issue). If [the customer service 

agent] is alerted to the event either through the in-car screen or mobile app 

buttons, or observes an apparent medical event occurring with a rider, agents are 

trained to quickly assist and assess the rider’s needs, including to contact 911 to 

dispatch emergency services to the location of the Waymo vehicle. (Waymo 

Passenger Safety Plan, January, 2024) 

 

Similar to remote monitors, customer service agents were initially recruited from the pool 

of operators but more recently, robotaxi firms have directly hired for this role. This role 

does not require a post-secondary degree but job postings call for prior experience in a 

call center (Job postings). Customer services agents must respond to a range of types of 

calls from safety-critical calls akin to those handled by emergency service operators to 

lower-stakes technology support calls. These agents receive in-classroom and on-the-

floor training to acquaint them with AV technology and their firm’s specialized tooling 

systems.  

 

2.6.7 Field Support 
 

If the AV is involved in an accident or is otherwise unable to continue on its 

journey (e.g., vehicle gets a flat tire), field support agents provide the necessary in-person 

response. These agents assist passengers with getting a new ride and can move the 

robotaxi vehicle or call for a tow, as needed. This role adopts many of the general service 

functions like vehicle cleaning and refueling that were previously performed by the taxi 
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driver. These tasks take on additional importance in the robotaxi system, as one Mid-

level Manager explained:  

…it's not just for the superficial aspect, there's actually a functionality to it with 

the sensors and the camera and stuff like that. If it's dirty, it's just not going to 

work so that’s why cleanliness is a pretty big priority. (Interview, August 10, 

2023)  

 

Field support agents also need to perform additional preparatory work, as one Senior 

Manager of a fleet depot described:  

In the trunk of the car is where the brain or the machine of the car lives. All of our 

computers, they're [field support agents] actually using their computer to connect 

to that vehicle to…fire up of all of the systems in the car, like a pre systems 

check…Think like an airplane. Before you have to send it out to fly or with 

NASA [going] into space, they’re doing all these pre-safety checks. (Interview, 

August 10, 2023) 

 

Field support agents receive in-classroom and on-the-floor training, including shadowing 

other agents. They follow strict, pre-established protocols for how to clean and prepare 

each vehicle before it can be deployed into the field. 

 

2.6.8 Incident Expert 
 

As their title implies, incident experts manage both real-time and post-hoc 

incident responses. These individuals help develop response protocols, advise other roles 

on how to respond in case of an incident, and collect information for mandatory data 

reporting requirements. As one incident expert described:  

We deal with everything from assaults to car crashes to media exposure to service 

outages, anything that can have a tangible effect on the brand or the operations of 

the fleet (Interview, August 9, 2023).  

 

In a typical taxi firm, dispatchers and managers perform these functions. Robotaxi firms 

are also subject to a number of reporting requirements at both the federal and, in many 
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cases, the state and local levels. Incident experts ensure that the required data are 

collected and reported to not only meet these external requirements but also to support 

internal organizational learning. One Mid-level Manager explained that incident experts: 

…handle the situation after. Once the dust settles, once everything's handled, [an 

incident expert’s] job is to backtrack. Let's go backwards. Let's figure out what 

happened. Where [were] we located exactly? What speed were we going? [Were] 

airbags deployed? Were seatbelts buckled? They go through all the little nitty 

gritty stuff. (Interview, September 26, 2023)  

 

AV firms can adjust their technology designs and operational protocols based on these 

detailed analyses. The incident expert role is not an entry-level position. Incident experts 

come from other high-stakes domains such as the military, the airline industry, and 

government intelligence agencies (Interview with Frontline Worker, August 9, 2023). 

They receive training on the technology systems and protocols for their firm but largely 

rely on their past experiences managing high-stakes situations to prepare them for the 

role. Unlike many of the other frontline roles, incident experts are employees and earn 

between $78,000-$115,000 (Job postings). 

 

2.6.9 Information Coordinator 
 

The creation of multiple new distinct but interconnected roles introduces greater 

complexity and information processing requirements into the robotaxi system. As 

Tushman and Nadler (1978) describe, the more that a subunit’s tasks rely on the tasks of 

another subunit, the greater the need for coordination, continual monitoring, and 

feedback. Some of this collaboration occurs through use of technology systems, but 

technology alone has proven insufficient to meet AV firms’ information processing 

needs, prompting the creation of the information coordinator role. Information 
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coordinators monitor operations in the central command center and track any incidents or 

issues that occur, synthesizing this information into regular reports that support 

organizational learning. Additionally, information coordinators act as a general support 

system for other roles. As one information coordinator described: 

When I first got here, it was a very siloed position focused on just writing a very 

specific summary, where we really kind of expanded into being a support system 

for every single team” (Interview, August 9, 2023).  

 

In effect, these roles serve as coordinating mechanisms, which Baldwin and Clark (2000) 

define as “channel[ing] effort and knowledge toward useful, attainable, and consistent 

goals.”  

Information coordinators are also not an entry-level positions. These workers 

have pivoted from other fields, bringing prior experience with vehicle fleet maintenance 

companies, warehouse or logistics operations centers, emergency medical services, or the 

military (Two separate Interviews Frontline Workers, August 9, 2023; Job postings). 

Information coordinators receive training on AV technologies, and learn the specific 

operations of their firm primarily by shadowing other information coordinators, as well 

as remote monitors and customer service agents. These shadowing experiences expose 

information coordinators to the other roles’ duties so they can perform their coordinating 

role more effectively.  

 

2.7 Patterns of Change: How roles respond to the introduction of AI 

 

Armed with a clearer understanding of robotaxi frontline labor roles, readers may 

now redirect their attention to Figure 2-2. This figure makes evident a phenomenon 

which prior studies have hypothesized: the introduction of AI technologies spurs a 
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rebundling of tasks and reorganization of adjacent labor roles. Through our analysis, we 

find that these processes occur via archetypal patterns (Figure 2-3). As the taxi work 

system transitions from a traditional to a robotaxi system, its roles exhibit one of the 

following three patterns of change: 

1. Distributing its tasks to other roles in the system, 

2. Consolidating tasks from other roles into one (often new) role, or 

3. Scaffolding other roles by absorbing tasks temporarily or on a semi-permanent 

basis to support the transition between phases. 

We note that these pattern names describe the type of change that occur and are not 

meant to imply decision-making on the part of a particular role, nor are they meant 

promote the idea of technological determinism. Rather, these changes arise from firms’ 

decisions on how to allocate work between capital and labor. Robotaxi firms could keep 

drivers onboard the AV9  to perform all remaining non-driving tasks but instead choose to 

eliminate this role, presumably because higher vehicle-to-worker ratios could yield 

significant cost savings (Kaplan, Nurullaeva, et al., 2024; Nunes & Hernandez, 2020). 

We thus emphasize that these patterns of change emerge as a result of technological, 

social, and economic forces. The following sections further describe these patterns. 

                                                           
9 Prior research finds that this type of role, often referred to as an “in-vehicle attendant,” could be an 

important feature for public acceptance of AVs, in particular for early adoption (Dong et al., 2019; Kaplan 

& Helveston, 2023a; Kyriakidis et al., 2020). 
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2.7.1 Distributing  
 

Distributing of tasks occurs when a role is eliminated from the system. Role 

elimination is preceded by the substitution of one or more of the role’s core tasks with an 

AI technology. During the distribution process, some tasks are distributed to a single role, 

while others are distributed to multiple roles that must then coordinate with one another. 

Tasks are not evenly distributed; some roles receive a greater portion redistributed tasks, 

yet no role receives a large enough portion that it could be considered a redefinition of 

the eliminated role. Distribution of tasks may, in some cases, require the identification of 

subtasks, a process which bears resemblance to Baldwin and Clark (2000)’s inverting 

operator which takes previously-hidden information and makes it visible.  

Some distributed tasks may be offloaded to the user, a trend also identified by 

Litwin et al. (2022), or excluded from the capabilities of the system. Offloading of tasks 

is distinct from outsourcing a task beyond the firm’s boundary. Our approach does not 

distinguish between whether a role exists within or beyond the boundaries of the firm. 

Rather, we establish our system boundary in terms of tasks that a firm must complete as 

part of its service and the associated task-role assignments. Indeed, some robotaxi firms 

Figure 02-3: The three archetypal patterns of change. 
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use contractors or have partnerships with traditional fleet maintenance companies to fill 

certain roles or perform specific tasks (Cruise, 2023a; Perez, 2018). Even if a firm 

outsources a role, those tasks are still performed by a worker and should be captured 

when mapping changes to labor roles. We acknowledge, however, that workers’ 

classifications and offshoring of labor have important implications for both worker and 

economy-level outcomes (NASEM, 2017). 

Figure 2-4 illustrates the distributing pattern of change for the driver and 

dispatcher roles. During the distribution process, the operator role receives the greatest 

number of tasks from the driver, with fewer tasks redistributed to the app, incident expert, 

manager, and mechanic roles, and some tasks eliminated. Distributing of driver tasks also 

spurs sharing of tasks between the app and vehicle, the incident expert and manager, and 

the operator and vehicle.  

 

2.7.2 Consolidating 
 

Consolidating describes the rebundling of tasks into a role. Human workers are 

generally flexible in terms of their ability to perform a variety of tasks (Autor, 2015), 

Figure 02-4: The distributing pattern. 
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giving firms greater latitude to experiment with different task-bundling approaches and 

role designs. Eventually, consolidating codifies task allocation into end-state roles. These 

roles do not exist in the initial system but rather come into being as firms gain an 

understanding of the types of roles required to support their new system designs. 

Consolidating involves allocation of both existing and newly-created tasks to roles. These 

new tasks emerge as part of a reinstatement effect wherein the introduction of automation 

technology generates new tasks that are better performed by labor than capital (Acemoglu 

& Restrepo, 2019). 

Figure 2-5 depicts the consolidating pattern for the field support, information 

coordinator, remote monitor, and customer service roles. The remote monitor’s core 

functions primarily derive from the operator role and new tasks. As a result of 

consolidating, the remote monitor also becomes involved in shared tasks with the vehicle, 

incident expert, field support, customer service, information coordinator, and manager.  

When the intended purpose of a role is well-known, consolidating can happen 

immediately following the introduction of the AI technology. We note this special case as 

a form of early consolidating, as occurs with the app, mechanic, and vehicle roles (Figure 

2-5). Since the purpose of a technology is typically prescribed in advance as part of its 

design process, early consolidating may be more common for technology roles. Though 

taxi firms use apps, consolidating transforms the app role by integrating tasks from the 

driver and dispatcher, along with new tasks. In the robotaxi and advanced robotaxi states, 

the app also shares tasks with the vehicle and operator. These changes create a distinctly 

new app role. 
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Figure 02-5: The consolidating and early consolidating patterns. 
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2.7.3 Scaffolding 
 

Firms introducing AI technologies to 

their work systems may undergo transitional 

phases during which they further develop 

their technologies and experience 

organizational learning, both of which impact 

role design. During these transition states, 

tasks may be temporarily assigned to 

scaffolding roles that absorb tasks from roles 

in one phase and redistribute or share them in 

a later phase. Some scaffolding roles exist 

only during the transition phase, whereas 

others remain as part of the mature system. 

Though scaffolding roles may absorb large 

portions of existing roles, they are not 

redefinitions of those roles because their 

composition and purpose are substantially 

different from the original roles. 

Figure 2-6 illustrates the scaffolding 

pattern for the operator, incident expert, and 

manager roles. As an example, the operator 

absorbs tasks from the driver and dispatcher 

and gains multiple new tasks. Some of these 

Figure 02-6: The scaffolding pattern. 
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new tasks are only relevant to the transition state and are eliminated in the following state 

(e.g., taking notes on AV performance). The operator role is not intended to remain in the 

robotaxi system and is ultimately eliminated; when this occurs, its absorbed tasks are 

redistributed to other roles. Some scaffolding roles, like the incident expert, remain in the 

advanced robotaxi system. In this later state, the incident expert reassigns some tasks to 

the customer service role and shares tasks with the manager, field support, information 

coordinator, and remote monitor roles. One could imagine the gradual phasing out and 

eventual elimination of the incident expert role if technology improvements result in 

fewer incidents and robotaxi firms’ reporting requirements decrease, reducing the 

importance of having a separate role to perform these functions. Over a longer timescale, 

the incident expert’s diagram may converge to look like the operator’s diagram.    

 

2.8 Using the Identified Patterns to Refine Analyses of AI Labor Impacts 

 

The results of this study demonstrate that altering the system boundary of analysis 

by taking a work-systems approach can reveal additional information about how AI-

enabled technologies are changing work. The identified patterns not only offer insights 

into how tasks and roles are being reshaped for a taxi system, but suggest adjustments for 

how scholars might refine their analyses of AI and labor at the task, role, sector, and 

economy-levels. Each of these levels of analysis deepens our understanding of changes 

that are occurring; by broadening the system boundary at which these analyses occur and 

leveraging our identified patterns, scholars can capture additional nuances that may alter 

the outcomes of their analyses, and may influence how practitioners plan for the 

introduction of AI technologies.   
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2.8.1 Task Level 
 

Our process of tracing tasks between roles reveals that additional task information 

emerges when trying to reallocate tasks from workers to technologies. In particular, 

reallocation may require identification of subtasks, some of which may still require 

human labor. The work required to identify and reallocate subtasks could introduce 

additional friction, manifesting as a cost penalty, when reallocating tasks to AI 

technologies. This friction may be more pronounced if firms need to establish 

collaborative relationships between human workers and AI technologies to perform 

certain subtasks. In their study of task automatability in the context of manufacturing, 

Combemale et al. (2021) identify “task separability,” defined as the feasibility, or cost, of 

having two tasks assigned to different performers, as a mediating factor influencing 

automatability. Our analysis suggests that subtask identifiability as a precursor to 

separability might also influence automatability, especially in work contexts where 

processes may be less well defined. Future models of technology change and labor 

impacts should incorporate these interacting effects.  

At the task level, there are also streams of literature which aim to characterize 

types of tasks so that different task types may be evaluated in terms of potential exposure 

to emerging technologies. While we do not measure task characteristics in this study, our 

identified patterns: 1) highlight that task characteristics are not fixed and can change as a 

result of technology introduction, and 2) suggest a directionality of change for certain 

task characteristics in established taxonomies. For example, Fernández Macías and 

Bisello’s (2020, p. 8) task taxonomy includes teamwork, defined as the extent to which 

the worker has to collaborate and coordinate her actions with other workers, as a 
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measurable attribute of a task. In all three of our patterns, we find that previously 

unshared tasks can become shared following AI introduction, suggesting an increase in 

teamwork required for many tasks. Based on Tolan et al.’s (2021) study of AI impacts 

based on task types, this would indicate that roles created after AI introduction could 

subsequently have lower AI exposure than the roles from which they were created. Using 

our identified patterns and existing task typologies, researchers could refine their 

predictions regarding how AI may reshape the workforce. 

 

2.8.2 Role Level 
 

Our identified patterns also allow researchers to refine their categorization of AI 

impacts to focus less on end-states and more on the processes by which changes are 

occurring. Referring to a role as substituted implies that the AI technology is performing 

all of that role’s tasks. In reality, the distributing pattern reveals that many of that role’s 

tasks are redistributed to multiple labor roles. This helps explain why “automating away” 

payrolls has largely been an aspiration goal for firms rather than an achievable outcome 

(Litwin et al., 2022). Similarly, the consolidating patterns demonstrates that multiple 

roles can emerge from the introduction of AI, some of which do not directly interface 

with the technology.  

Labor roles exhibiting the distributing and consolidating patterns may have 

different wages, education requirements, training needs, etc. depending on how those 

processes unfold. When researchers focus on the end-states of roles, they miss many of 

the important decisions that shape work system design during that process of change. Our 

identified patterns draw attention to these decision points. Previously, researchers may 
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have asked: 

 Does a firm choose to adopt a technology to perform a task? 

 Does a firm choose to eliminate the role associated with that task (substituting) or 

use the technology to help perform that task (complementing)? 

 

By leveraging our patterns, researchers could open up investigation of: 

 How does the firm choose to bundle the eliminated role’s tasks (i.e., how does 

consolidating take place)? Do workers have higher skill levels and wages as a result 

of distributing or consolidating? Do they hold more power?  

 Does a firm exhibit scaffolding, suggesting the existence of a transition state? If so, 

what happens to scaffolding roles during and following these transition states? 

Might scaffolding roles be desirable but lack long term stability? 

 

The scaffolding pattern in particular draws attention to transition states that may 

take place as part of AI deployment. Depending on the timescale of analysis, current 

categorization schemes might be labeling scaffolding roles as either substituted or 

complemented, or these roles might be missed entirely if looking only at the beginning 

and end state of a system. By looking for evidence of the scaffolding pattern, researchers 

can more systematically identify this type of role and start tracking its labor outcomes. As 

part of those analyses, they could evaluate how these types of roles are initially created 

and later changed or eliminated, and whether those decisions play a critical role in the 

performance of that work system.  

In their 2022 paper, Doellgast and Wagner urge scholars to consider the political 

and institutional factors that shape how technologies are deployed and their impacts on 

workers (Doellgast & Wagner, 2022). Researchers performing these types of comparative 
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studies could use our identified patterns as grounding points of comparison between 

contexts. For instance, they could compare how workers and worker representatives 

influence consolidating processes. Beyond retrospective analyses, identifying patterns of 

change using our categories may create opportunities to be intentional about shaping role-

level outcomes. Just as workers and society could have a greater say in what technologies 

are introduced into the workplace (D. E. Bailey, 2022), workers could take part in 

discussions regarding how tasks and roles are reorganized to promote positive outcomes.  

 

2.8.3 Sector/Economy Level 
 

Finally, our patterns suggest that sector-level estimates of AI impacts on labor 

may be miscounting the number of affected occupations—undercounting impacts in some 

respects and over-counting impacts in others. Researchers have undercounted impacts by 

focusing on the primary roles associated with an “automatable” task. Sector-level 

estimates about AVs, for instance, have bounded their analyses to occupations whose 

primary responsibility is driving, occupations associated with personal driving, and 

occupations that require driving as a skill (Beede et al., 2017; Groshen et al., 2018). Our 

analysis reveals that occupations that interact with those primary roles (e.g., dispatchers) 

are also impacted by the introduction of AI technologies. These impacts to secondary 

occupations may emerge from process reconfigurations that prompt distributing of 

secondary occupations’ tasks. Researchers may therefore need to increase their estimates 

of workers who may be exposed to AI. One way to do this would be to look through 

O*NET data (or data from other work survey instruments) for mention of connected 

roles. For example, O*NET tasks for “Taxi Drivers” include “communicate with 
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dispatchers by radio, telephone, or computer to exchange information and receive 

requests for passenger service” and “notify dispatchers or company mechanics of vehicle 

problems” (Bureau of Labor Statistics, 2023b). These tasks call out the involvement of 

other roles which should be considered in impact analyses.  

While researchers may be undercounting impacts to some degree, our patterns 

demonstrate the erroneous nature of evaluating a role through the narrow lens of a 

particular automatable task. We reaffirm Gittleman and Monaco’s (2020, p. 1,4) finding 

that “drivers do more than drive.” In the general passenger transportation sector, AV 

firms are choosing to eliminate the driver role and redistribute its tasks to other roles. In 

other market segments, however, the importance of the non-driving tasks might outweigh 

the value-added of automating the driving task. For example, taxi drivers have become 

more involved in non-emergency medical transport, a sector for which the in-person 

support tasks are more essential (Interview with AV Regulation Expert, February 15, 

2023). Taxi drivers that are involved in that sector may be less affected by AVs. Sector-

level analyses of job impacts should incorporate regulatory requirements and consider the 

relative importance of automatable versus non-automatable tasks within that specific 

context to better predict how many jobs might realistically be impacted. Ultimately, the 

remaining tasks not performed by AI technologies may determine whether the 

technologies are introduced at all.  

 

2.9 Conclusion 
 

In this study, we find and empirically demonstrate that the introduction of AI-

enabled technologies can spur the rebundling of tasks and labor roles in a work system. 
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For the robotaxi work system, the introduction of autonomous vehicles leads to the 

redistribution of tasks between multiple new and existing labor roles. This seemingly 

chaotic redistribution process occurs via archetypal patterns which we identify and 

characterize. Distributing roles reallocate their tasks to other roles in the system. 

Consolidating roles absorb tasks from other roles into their, often newly created, role. 

Work system changes may also involve transition states. During these transition states, 

scaffolding roles absorb tasks temporarily or on a semi-permanent basis to support the 

transition. These patterns provide a structured way to examine and predict how labor 

changes and resultant labor impacts might unfold in response to a new AI technologies’ 

introduction and suggest changes for how researchers should refine their labor impact 

analyses at the task, role, and sector levels. Finally, by characterizing role changes as 

processes, these patterns empower members of the public, workers, and practitioners to 

actively shape desirable labor outcomes.  
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Chapter 3: The Economics of Robotaxi Services 
 
 

The objective of this study is to compare the relative competitiveness of 

traditional taxi and robotaxi services. This research draws on findings from the first study 

regarding what labor roles currently exist in robotaxi firms and which ones are likely to 

persist in the future. This chapter is based on Kaplan et al. (2024), a conference paper 

accepted to the 2024 Bridging Transportation Research Conference.  

 

3.1 Introduction 
 

Autonomous vehicle (AV) companies are rolling out driverless taxi-type services 

(robotaxis) in cities around the world, including in multiple cities in the United States. 

These firms have attracted billions of dollars of investment, with financial backers betting 

on a future in which vehicle automation could cut labor costs and increase profitability 

via removal of the driver (Shetty, 2020). Indeed, labor is one of the main cost 

expenditures for current taxi operators (Daus, 2023).  

Investors are not the only group eager for an AV future. Many cities are looking 

to AVs to make their transportation systems cheaper, safer, less congested, and more 

accessible (McAslan et al., 2021). Prior studies find that robotaxis could improve road 

safety (Blumenthal et al., 2020), enhance fuel efficiency via more efficient driving and 

braking (Williams et al., 2020a), and offer new mobility pathways for low-income and 

low-mobility populations if designed appropriately (Creger et al., 2019; Steckler et al., 

2021).  

Balanced against these hopes is significant concern for the impact of AVs on 

labor (Cohen et al., 2018; Hilgarter & Granig, 2020; Norton et al., 2021). One recent 
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study estimated that vehicle automation could eliminate 1.3 to 2.3 million workers’ jobs 

over the next 30 years (Groshen et al., 2018). While many of the at-risk jobs are in the 

trucking sector, AVs still pose a potential threat to taxi and ride-hailing drivers’ jobs. In 

the United States, there are an estimated 395,700 taxi drivers, shuttle drivers, and 

chauffeurs, and over 830,000 jobs in the broader door-to-door passenger transportation 

service sector (Bureau of Labor Statistics, 2023c; L. Cameron, 2020). Critically, many of 

these driver roles are filled by immigrants who may face greater challenges recovering 

from job displacement (Dubal, 2017).  

In this study, we investigate potential competition between traditional taxi and 

robotaxi services with the aim of contributing to discussions on potential AV labor 

impacts. We develop ground-up cost models for both types of services, and are the first 

study to ground our labor assumptions in data on the operations of currently-deployed 

robotaxi services in the U.S. We exclude direct analysis of autonomous ride-hailing 

services, as the structure of existing robotaxi firms more closely mirrors that of a 

centralized taxi company rather than a decentralized (with regard to frontline workers) 

Transportation Network Company (TNC, e.g., Uber). Moreover, Negro et al. (2021) find 

that vehicle automation largely does not impact TNCs’ operating costs. While 

competition from robotaxis could still impact the jobs of ride-hailing drivers, the cost 

dynamics by which that competition may arise are beyond the scope of this study. To 

further unpack potential labor impacts, this study also offers estimates regarding the 

number of frontline workers required to support traditional taxi and robotaxi services and 

their associated wage distributions.  
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3.2 Prior Literature on Robotaxi Costs  

Multiple prior studies have modeled the costs of different AV services (Table 3-

1). Burns et al. (2012) proposed one of the earliest estimates, investigating costs for three 

different types of AV operational scenarios and concluding that a system of shared 

robotaxis in Manhattan could provide transportation services at a cost of $0.40/mi or 

$0.80 per trip (compared to $7.80 per trip for conventional taxis). Additional cost model 

studies have similarly estimated that autonomous taxi and ride-hailing services would 

outcompete their non-autonomous counterparts (Compostella et al., 2020; Greenblatt & 

Saxena, 2015; Wadud, 2017). Fulton et al. (2017) described how a combination of two 

potential transportation revolutions—electrification and automation—could decrease 

system operational costs by 40%. From the consumer perspective, a report from UBS 

Global Research (2017) posited that cost savings from robotaxi operations could decrease 

fares by as much as 80%, dramatically shifting mode preferences.  

Though cost estimates have become more detailed over time, they still lack 

precision in two key areas: 1) the capital cost for autonomous vehicle technology, and 2) 

the labor costs to operate an AV service. Critically, these two forms of fixed asset 

expenditures account for the majority of costs in conventional modes (Negro et al., 2021).  

The capital cost of AV technology is highly uncertain, with prior estimates 

ranging from $2,700 to $50,000 per vehicle (Burns et al., 2012; Fagnant & Kockelman, 

2016; Greenblatt & Saxena, 2015; Stephens et al., 2016). Many studies either provided 

no details regarding this assumed cost or generally discussed high upfront investment 

costs that will decrease over time (Arbib & Seba, 2017; B. Johnson, 2015; UBS Global 

Research, 2017). The majority of studies used an automation cost value of around 
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$10,000 per vehicle, which originates from a 2015 Boston Consulting Group report and is 

based on Tesla’s original proposed cost for its “full self-driving” sensor suite (Bauer et 

al., 2018; BCG, 2015; Bösch et al., 2018; Compostella et al., 2020; Fulton et al., 2017; 

Hazan et al., 2016; C. Johnson & Walker, 2016; Nunes & Hernandez, 2020; Sperling et 

al., 2018; Stephens et al., 2016; Wadud, 2017). Notably, Tesla’s sensor suite does not 

include LiDAR sensors, which many experts believe are essential for safe AV operations 

and are used in all commercially-available robotaxi services (Bauchwitz & Cummings, 

2022; Cruise, 2023c; Waymo, 2023; ZF, 2023). While LiDAR costs have decreased 

significantly over the past decade, and will undoubtedly continue to decline, top-of-range 

LiDAR sensors still cost approximately $5,000 each (Korosec, 2019). Current robotaxis 

rely on multiple LiDAR sensors and dozens of other sensors to achieve critical autonomy 

and mapping functions, and require additional on-board compute equipment (Rodnitzky, 

2022). It is unclear when, or if, AV capital costs might actually reach prices akin to prior 

studies’ assumptions. In this study, we utilize AV prices that reflect current AV capital 

costs in order to look at nearer-term competition, and consider lower technology costs as 

part of our scenario analysis.  

A second common assumption is that vehicle automation will “zero out” labor 

costs by removing the driver (Arbib & Seba, 2017; Compostella et al., 2020; Fulton et al., 

2017; Greenblatt & Saxena, 2015; C. Johnson & Walker, 2016; Sperling et al., 2018; 

UBS Global Research, 2017). This assumption not only appears in AV cost models, but 

also in microsimulation studies of AV impacts (Brownell & Kornhauser, 2014; Wigand 

et al., 2020; Zhu et al., 2021). More recent cost model studies have begun factoring in 

labor costs for AV services. Wadud (2017) and Wadud & Mattioli (2021) accounted for 
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some labor expenditures by decreasing former driver costs by 60% for AV services to 

capture other roles that may arise (e.g., back office infrastructure, ensuring safety) and 

Bauer et al. (2018) similarly included a $2.50 per vehicle-day general administrative 

overhead expense. Bösch et al. (2018) and Becker et al. (2020) noted that labor expenses 

for robotaxis will shift from drivers to higher cleaning costs as customers may sully or 

damage vehicles more often absent social pressure from a driver. Nunes and Hernandez 

(2020) were the first to consider emerging labor roles in their model, adding in costs for 

AV safety oversight monitors (Heineke et al. (2022) also mentioned workers based in an 

AV control center but provided no cost details). Negro et al. (2021) offered the most 

detailed inclusion of labor to date, including safety oversight monitors, general fleet 

maintenance personnel, and administrative staff members. Their model, however, still 

relies on assumptions about required labor roles rather than actual operational practice. 

In this study, we improve the precision around labor cost estimates with an up-to-

date understanding of the labor roles needed to support robotaxi services. We are the first 

study to ground our model in actual robotaxi operations, basing our input values on direct 

observations of commercial robotaxi services operating in U.S. cities, semi-structured 

interviews with AV operational and regulatory experts, and published reports from AV 

firms. Adding detail to the labor roles not only offers a clearer idea of the actual labor 

costs for robotaxi services and how they might compete in the transportation 

marketplace, but also suggests what labor ratios companies may push for in order to 

become more competitive. Ultimately, the labor ratios robotaxi firms adopt will yield 

important safety and labor-displacement impacts.  
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Table 3-0-1: Summary of prior cost estimates, including assumed technology costs and labor considerations. 
VMT = vehicle miles traveled, PMT = passenger miles traveled. 

Paper Units Cost Tech estimate Labor Considerations 

Burns et al. (2012) $/VMT $0.40  $6,935*  NA 

Johnson (2015) $/VMT $0.12-0.29 NA NA 

Greenblatt and Saxena (2015) $/VMT $0.30-0.50 $5,000 (2030) Eliminate driver costs for AVs 

Boston Consulting Group 

(2015) 

NA  NA  $10,000  NA 

Stephens et al. (2016) $/PMT $0.28-$0.55 $2,700-$10,000 NA 

Fagnant and Kockelman 

(2016) 

NA  NA  $50,000  NA 

Johnson and Walker (2016) $/VMT $0.08  $2,700 (2035) - $10,000 

(2025) 

Eliminate driver costs for AVs 

Hazan et al. (2016) $/PMT $0.15  $10,000  NA 

Arbib and Seba (2017) $/VMT $0.06-0.24 NA  Eliminate driver costs for AVs 

Wadud (2017) $/VMT $1.01  $16,000  Decreases driver costs by 60% for AVs to account for 

other roles (e.g., back office infrastructure, ensuring 

safety) - max scenario decreases labor costs by 80% 

Fulton et al. (2017) $/PMT $0.68 $10,000 (2030)- $5,000 

(2040) 

Eliminate driver costs for AVs but include overhead costs 

of operating a ride-hailing service for the shared AV/EV 

fleet 

UBS Global Research (2017) NA   NA  NA Eliminate driver costs for AVs 

Bösch et al. (2018) $/PMT $0.66   $7,000**  Costs for autonomous taxis will shift from paying drivers 

to higher cleaning costs 

Bridges (2018) $/VMT $0.06-0.24 NA NA 

Sperling (2018) $/PMT $0.10-0.20 $10,000  Eliminate driver costs for AVs 

Bauer et al. (2018) $/VMT $0.29-$0.61  $10,000  $2.50 per vehicle-day ("administrative overhead") 

Becker et al. (2020) $/PMT $0.10-$0.71 $5,000 Include cleaning and fixed overhead costs 

Compostella et al. (2020) $/VMT $0.36-0.41 $10,000***  Eliminate driver costs for AVs 

Nunes and Hernandez (2020) $/VMT $1.58-$6.01 $15,000  Include safety oversight for robotaxis at varying vehicle 

to worker ratios 

Negro et al. (2021) $/VMT $0.76-$0.84 $40,000 Include safety oversight for robotaxis, fleet maintenance 

personnel, and administrative staff 

Wadud and Mattioli (2021) $/VMT $0.68-$0.83 ~$3,800**** Based on Wadud (2017) taxi labor costs 

Heineke et al. (2022) NA  NA  NA  Discuss vehicle control center, no cost provided 

Litman (2023) $/VMT $0.50-$1.00 NA  Discusses potential need for other types of onboard 

workers, not included in cost comparison 

NA indicates that info about the given variable not provided.; *Assuming cost of $19 per day; **Automation increases vehicle price by 20% (midsize 

vehicle) 

***Assuming $30,000 for high-cost scenario.; ****Converted from British pounds 
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3.3 Methods 

We develop ground-up cost models for a non-AV taxi service and a robotaxi 

service, grounding our analysis in data on current robotaxi operations in U.S. cities and 

existing taxi operations. Though some studies hypothesize that AVs could induce higher 

transportation demand (Harper et al., 2016; Wadud et al., 2016), AV companies need to 

develop business models in the short term that align with current mobility demands. We 

therefore leverage existing taxi operational data when possible and test assumptions 

regarding operations of robotaxi services via a baseline and four alternative scenarios (AV 

Advanced Technology, AV High Usage, AV Medallion System, and AV Lower Density 

Region). We use Monte Carlo simulation to account for both uncertainty and variation in 

our model inputs (e.g., differences in demand based on time of day or time of year). All 

models are built in the R programming language (R Core Team, 2024) and all code is 

publicly available at https://github.com/lkaplan25/av_labor_cost_2024. 

 

3.3.1 Identifying Labor Roles 

Although the majority of AV firms are still in testing and development phases, a 

limited number of AV firms are operating commercial robotaxi services in select cities. 

We investigate firms operating robotaxi services in the U.S. to gain early insights into the 

“frontline” labor roles (i.e., those that directly support the service rather than those 

involved in the technology design and development) necessary to support these services 

and the current wages for those roles. In doing so, we adopt the same system boundary 

for labor as was used in Study 1 (Chapter 2). 

Rather than include all of the identified taxi and robotaxi frontline labor role 
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expenses as part of a single labor cost category, we divide the labor costs across a few 

different cost categories (further detailed in the next section) to better leverage existing 

data and research on taxi operational costs. We include the Manager role as part of 

general and administrative (G&A) costs and the Mechanic role as part of vehicle 

maintenance costs. We also combine the Incident Expert and Information Coordinator 

roles into one “Coordinator” labor role since there are relatively few of each type of 

worker and both roles earn similar wages. The remaining taxi and robotaxi frontline roles 

are included in the labor cost category for their respective models. 

We use multiple data sources to triangulate information about current labor roles, 

including direct observations, interviews, and a variety of archival data sources (Table 3-

2). In doing so, this study is the first to base robotaxi labor assumptions on actual 

operational practices.  

One of the authors conducted direct observations of two different firms’ 

commercially-available robotaxi services in the U.S. (N = 13 rides), as well as six hours 

of observation of a robotaxi command center and two hours of observation of a robotaxi 

fleet maintenance depot between July 2022 and August 2023. Five of the robotaxi rides 

included a human safety driver onboard while the remainder did not. Over the course of 

the rides, the researcher interacted with customer-facing employees of the service, 

including forms of human remote support.  

To supplement these observations, the same researcher conducted 26 semi-

structured interviews with AV operational and regulatory experts (27 unique interviewees 

in total, two interviews included two individuals, and one interviewee was interviewed 

twice). Interviewees were recruited via purposive sampling (Eisenhardt & Graebner, 
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2007). Over half of the interviewees were either current or prior employees of a 

commercial robotaxi company. Five of the interviewees were involved in robotaxi pilot 

programs or government-run robotaxi deployments. The remaining interviewees had 

expertise on additional operational and regulatory considerations for AV labor roles. The 

interviewees were primarily familiar with U.S.-based deployments, though one 

participant also had expertise in AV operations occurring in the European Union.  

Interviews were conducted until theoretical saturation was achieved (i.e., new 

interviewees did not mention any new labor roles, and previously observed roles were 

mentioned multiple times across different interviewees). Consistency across interviewees 

provided us with confidence that additional interviews would not yield new information 

about additional labor roles. All interviews for which consent to record was given were 

recorded and transcribed via auto-transcription software within 24 hours of the interview. 

All transcripts were edited by the researcher who conducted the interviews within 48 

hours.  

We triangulated information from these interviews with archival data provided by 

the interviewees and identified by the researchers, including safety cases published by 

AV companies that further detail their operations, job postings for frontline roles at AV 

firms, and news articles that mention frontline labor roles for different robotaxi services 

(Eisenhardt, 1989). These sources confirmed the existence of equivalent roles across 

multiple robotaxi firms. We used the information from the observations, interviews, and 

archival documents to generate a list of frontline labor roles for robotaxi operations 

which we then incorporate into our cost model. We summarize these labor roles in the 

following section. 
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Although vehicle automation may eliminate drivers, analysis of our observations, 

interviews, and archival documents reveals that AV firms still require human labor for 

numerous other roles, many of which are new labor roles that do not exist in traditional 

taxi or TNC services. These roles include not only cleaners and safety oversight monitors 

(or “remote monitors”) included in prior studies, but also field support agents, customer 

service agents, and coordinators. Table 3-3 compares how traditional and robotaxi 

services use a combination of technology and human labor to fulfill necessary functions 

of a taxi-type service, including brief descriptions of each of these functions.  

Table 3-0-2: Summary of data sources used to identify labor roles in robotaxi services. 

Interviews 

Category Position 

Number of 

Unique 

Interviewees 

Total Length of 

Interview(s) 

(min) 

Commercial 

Operations 

Frontline Worker 6 280* 

Mid-level Manager 5 166 

Senior Manager 5 209 

Pilot Program or 

Government-Run 

Deployment 

Operations Manager 3 182** 

Policy/Communication 

Manager 2 278 

External 

Perspective 

AV Operations Expert 3 131 

AV Regulations Expert 3 357 

Total: 27 1603 

Observations 

Observation Type 

Number of 

Observations 

Total Duration 

(min) 

Robotaxi rides 13 237 

Observations of robotaxi command center 1 360 

Observations of robotaxi fleet maintenance 

depot 1 120 

Total: 15 717 

Archival 

Documents 

Document Type 

Number of 

Items 

Total Number of 

Pages 

News Articles Mentioning Frontline Robotaxi 

Roles 7 64 

AV Firm Public Reports and Petitions 5 168 

Job Postings for Frontline Robotaxi Roles 20 39 

Reports about AV Regulations 4 271 

Supplementary Responses and Documents from 

Interviewees 4 17 

Total: 40 559 

*One 30min interview included a Frontline Worker and a Mid-Level Manager. Interview length 

counted here. 

**One 64min interview included an Operations Manager and a Policy/Communication Manager. 

Interview length counted here. 
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Field support agents are responsible for providing in-person response in case of 

incidents ranging from minor problems that inhibit the vehicle’s progress, such as a flat 

tire, to more severe issues like a collision. These workers also assist with general vehicle 

service tasks like vehicle cleaning and refueling. Customer service agents answer rider 

questions, issue safety reminders, and manage rider behavior. Coordinators facilitate the 

sharing of information both within and beyond the AV firm. Their primary 

responsibilities include managing communication with key stakeholders in case of 

incidents, collecting and reporting data in support of mandatory reporting requirements, 

and facilitating collaboration across different teams (see chapter 2 for more detailed 

descriptions of the aforementioned roles and their responsibilities). 

Some AV firms also include an in-vehicle attendant as an additional layer of 

technology and passenger support or to comply with existing regulations requiring a 

safety driver. We choose to exclude this role in our cost model as most robotaxi firms 

have either already removed or plan to eliminate this role in the future. We bound our 

analysis to the steady-state operations of robotaxi services and exclude labor involved in 

training the AV systems (e.g., roles often called AV Test Drivers or AV Operators). 
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Table 3-0-3: Comparing labor and technology roles in traditional and robotaxi services. 

Function Function description Taxi Service Robotaxi Service 

Vehicle 

general 

service 

Vehicle cleaning, refueling, start-

up procedures ("Pre-flight 

checks") 

Driver  Field Support Agent 

In-vehicle 

passenger 

support 

Assisting ADA riders, providing 

entertainment, managing conflict 

between riders 

Driver 
In-Vehicle Attendant or 

Vehicle Design 

Customer 

service 

Answering questions about the 

service, managing rider behavior 
Driver & Dispatcher Customer Service Agent  

Driving Operation of the vehicle Driver 
Automated Driving 

System 

Incident 

response 

Assisting riders, speaking with 

Emergency Management 

Services (e.g., in case of 

accident) 

Driver 
Field Support Agent +  

Coordinator 

Fare 

collection 
Collecting payment for ride Driver/App App 

Dispatch 

Matching vehicle to riders, 

allocating vehicles in service 

area 

Dispatcher (+ 

Computerized 

dispatch technology) 

Dispatch algorithm 

Vehicle 

maintenance 

Repairs to vehicle (and sensors), 

oil changes, tire rotations 
Mechanic  

Remote 

monitoring 

Providing remote assistance to 

the vehicle as needed 
N/A Remote Monitor 

Information 

Processing 

Coordinating communication 

between roles, documenting 

processes, collecting information 

for mandatory reporting 

N/A Coordinator 

 

 

3.3.2 Cost Model  
 

We develop cost models to compare the fare per mile values of traditional taxi and 

robotaxi services. We base our cost models on Nunes and Hernandez’s (2020) 

framework, but separate out labor as its own cost category and include financing of the 

automation technology (i.e., sensors and computing equipment) as a separate expense for 

the robotaxi calculation (Equation 3.1). We summarize each component of the cost model 

below and provide detailed descriptions of each individual input calculation in Appendix 

B. For robotaxis, we compute fare per mile values for a baseline scenario as well as four 

alternative scenarios described in the Scenario Analysis section below. 
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Fare per mile =    

(Vehicle Financing + Technology Financing + Licensing + Insurance + 

Maintenance + Cleaning + Fuel + Profit + Labor + G&A) / Capacity Utilization 

Rate 

(3.1) 

  

 

 

Prior cost model studies used annual mileage values ranging from approximately 36,000 

to 100,000 miles per year (Bösch et al., 2018; Compostella et al., 2020; Fagnant & 

Kockelman, 2016; Greenblatt & Saxena, 2015; Nunes & Hernandez, 2020; Sperling et 

al., 2018). We assume an annual mileage of 65,000 miles per year for our baseline taxi 

and robotaxi models based on the average annual mileage for a taxi in New York City 

(Schaller Consulting, 2006) and test additional annual mileage values in the robotaxi 

scenarios. 

Capacity Utilization Rate is defined in this study as the number of passenger 

miles traveled divided by the total miles traveled (passenger miles + unoccupied miles). 

Cramer and Krueger (2016) calculated taxi and UberX utilization rates for five U.S. cities 

and found utilization rates between 32.0-54.9%. We assume a utilization rate of 50% in 

our baseline models in alignment with Nunes and Hernandez’s (2020) utilization rate of 

52% for their San Francisco-based model and explore alternative utilization rates in the 

robotaxi scenarios. 

Vehicle Financing covers costs associated with the fixed expense of the vehicle. 

Following prior studies, our baseline models assume no down payment, an annual fixed 

interest rate of 7%, a 3-year loan payment period, and a 5-year vehicle lifespan 

(Compostella et al., 2020; Nunes & Hernandez, 2020). We use the mean price for a 

hybrid electric vehicle (as developed in Compostella et al. (2020)’s ground-up cost 

model). While some AV companies like Cruise are using battery electric vehicles, the 
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majority of current companies use hybrid vehicles for their commercial or pilot-scale AV 

deployments. For this reason, we also use hybrid vehicles in our robotaxi scenarios. Some 

robotaxi companies are developing vehicles that are purpose-built for autonomy that lack 

features present in other vehicles, such as a steering wheel and brake pedals (Ammann, 

2020). The current cost of such purpose-built vehicles is not publicly available, but the 

potential cost savings due to removing redundant parts is tested in one of the robotaxi 

scenarios.  

Technology Financing provides an estimate for automation capital costs, 

including sensors, computing equipment, and data storage expenditures. We assume the 

same interest rate, loan payment period, and technology lifespan as for the vehicle 

financing calculation. In a 2021 interview, the CEO of the robotaxi firm Waymo asserted 

that their vehicles cost approximately the same as a moderately equipped Mercedes S-

Class (in the mid-$100,000 range) (Moreno, 2021). Public reporting also estimated the 

cost of Cruise’s autonomous Chevrolet Bolt between $150,000 to $200,000 (Mickle et 

al., 2023). Eight of our interviewees offered estimated costs of over $100,000 per AV, 

with five interviewees estimating a cost of over $250,000 per AV (the remaining 

interviewees did not provide estimates). Deducting the cost of the base vehicle, these 

estimates suggest that automation costs could still exceed $100,000. We assume a 

technology cost of $150,000, which we exclude from the traditional taxi model.  

Licensing accounts for fees levied on for-hire vehicles. In Chicago, taxicabs must 

pay a per-vehicle license fee ($500 per 2-year term), a ground transportation tax 

($98/month), a taxi accessible fund fee ($22/month), and an advertising fee ($100/year)10 

                                                           
10 This fee is required prior to displaying interior or exterior advertising. The advertising fee is included 

since it is assumed that robotaxi companies will leverage advertising as an additional revenue source 
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(BACP, 2020). Taxi chauffeurs must also pay a nominal chauffeur license fee ($5 per 2-

year term) which was excluded from the analysis as the model adopts the perspective of 

the operator rather than the chauffeur and the nominal fee was not expected to 

significantly change results. Though this study adopts the term “robotaxi” to refer to 

fully-automated, on-demand passenger transportation services, the regulatory status of 

these types of services is yet undetermined in the United States11. Future robotaxi services 

could fall under either existing taxi regulatory structures or those for TNCs. These two 

regulatory structures involve different licensing fees. In Chicago, TNCs must pay a 

license and administration fee ($10,000/year for each company + $0.02/trip), a ground 

transportation tax ($0.53 to $7.88 per trip), an accessibility fund fee ($0.10/trip), and a 

per-vehicle advertising fee ($100/year).  

We test both types of fee structures for future robotaxi operations and find that 

our model is not highly sensitive to either fee structure. We therefore adopt a taxi fee 

structure for the baseline models. We note that in some cities (including New York) 

licensing occurs through a medallion system which can impose an additional high cost on 

taxi operators. We explore the effects of a medallion system in one of the scenarios. 

Insurance covers the monthly cost to insure the vehicles. A monthly insurance 

premium of $682 is assumed in our baseline scenario based on the average monthly taxi 

insurance rates for fleets of greater than 100 vehicles (Bodine & Walker, 2023). Prior 

studies have proposed that vehicle automation will alter maintenance, fuel, and insurance 

                                                           
(Gonzalez, 2021), though advertising revenue is not included in the model. We found that the model is not 

sensitive to this input so excluding this fee would not change the study’s findings. 
11 Taxi regulation typically occurs at the city-level, though TNC regulation has primarily occurred at the 

state level. The California Public Utilities Commission has issued the only service regulation for robotaxi 

services thus far, and used TNC regulations as the underlying framework, suggesting other states may 

employ a similar approach. 
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costs. We include these effects in some of our robotaxi scenarios given their uncertain 

nature. 

Maintenance covers routine vehicle maintenance and repair. Two studies 

evaluating the operational expenses of TNC drivers in Seattle and New York find that 

maintenance expenses average approximately 5 to 7 cents per mile (Parrott & Reich, 

2018; Reich & Parrott, 2020). Usage of vehicles for taxi and ride-hailing purposes is 

presumed to be equivalent, and a value of 6 cents per mile is assumed for the baseline 

models. 

Cleaning accounts for the cost of cleaning the interior and exterior of the vehicle. 

We assume that taxi drivers clean the interiors of their vehicles every other day using $6 

do-it-yourself cleaning supplies and clean the exterior of their vehicles using a $10 

automatic car wash once per week (Rainstorm Car Wash, 2023). Given the sensitive 

nature of their sensors, robotaxi vehicles must be cleaned by hand by field support agents. 

We thus account for the robotaxi cleaning costs as part of the field support agent labor 

cost, assuming that the cost of the worker is greater than the marginal cost of the cleaning 

supplies required to perform the cleaning task.  

Fuel estimates the gasoline costs for operating robotaxi services. We use current 

estimated gas prices (AAA, 2023) and fuel efficiencies for hybrid vehicles (EPA, 2021).  

Profit accounts for the firm’s profit margin. We assume that robotaxi firms will 

aim to achieve at least the same profit margin as current taxi firms and adopt Nunes and 

Hernandez’s (2020) assumption of $0.27/mile.  

Labor covers the cost of frontline workers for traditional and robotaxi services. 

For traditional taxi services, we include costs for taxi drivers and dispatchers. We assume 
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wages of $15.82/hour for drivers and $17.05/hour for dispatchers based on the mean 

hourly wages for those roles in the U.S. Taxi and Limousine Service industry (Bureau of 

Labor Statistics, 2023b, 2023a). We assume that for 24/7 operations a taxi firm would 

require two driver shifts and three dispatcher shifts. Each dispatcher would be responsible 

for 20 vehicles (Nunes & Hernandez, 2020). 

Based on our data collection regarding current robotaxi operations, we include the 

following labor roles for robotaxi services: remote monitors, field support agents, 

customer service agents, and coordinators. For 24/7 operations, we assume three eight-

hour shifts for each role. We use recent job postings by AV companies on contractor 

websites and on general job sites such as Indeed for equivalent positions to set hourly 

wages for the roles: $19/hour for customer service agents and remote monitors, $24/hour 

for field support agents, and $29/hour for coordinators (Adecco, 2023; Cruise, 2023a; 

ICONMA, 2023; Indeed, 2023). We assume an overhead rate of 1.59 that applies to one 

full-time worker per shift (Nunes & Hernandez, 2020).  

A 2023 statement from the robotaxi firm Cruise’s CEO described how the firm’s 

remote monitors typically manage between 15-20 vehicles each (Kolodny, 2023). We 

assume a 1:16 worker to vehicle ratio for both the remote monitors and the customer 

service agents in the AV Baseline model. As described in Table 3-3, field support agents 

are responsible for cleaning and preparing the robotaxi vehicles prior to their use. One 

field support agent can prepare a vehicle in approximately 20 minutes (Interview 22), 

meaning 24 vehicles could be prepared per 8-hour shift if one worker is always preparing 

a vehicle. In addition to preparing vehicles, field support agents must also be stationed in 

the deployment area in order to quickly respond to incidents. We assume a 1:6 ratio for 
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field support agents to vehicles to account for their responsibilities both within the 

vehicle depot and out in the field. Coordinators are a more specialized role that help 

manage communication between the other labor roles. We assume a 1:5 ratio between the 

coordinators and the remote monitors, which translates to a 1:80 coordinator to vehicle 

ratio.  

General and Administration (G&A) accounts for additional administrative costs. We 

assume that the traditional and robotaxi firms are similarly structured centralized firms 

and have similar G&A costs. We adopt Nunes and Hernandez’s (2020) assumption of 

$0.05/mile.  

 

3.3.3 Monte Carlo Simulation 

Prior studies have accounted for variation in service usage by considering multiple 

spatial and temporal utilization scenarios and location-specific input values (H. Becker et 

al., 2020; Bösch et al., 2018). For each scenario, we conduct a Monte Carlo simulation to 

account for variation and uncertainty in a broader number of model inputs. In the Monte 

Carlo simulations, inputs are modeled as distributions rather than point estimates, which 

are passed through the model by taking random draws (N = 10,000) of the assumed 

distributions. We compute the fare per mile for each set of draws across all random 

inputs, resulting in a distribution for the fare per mile value rather than a point estimate. 

For the miles per trip input, as well as one mileage-based licensing fee, we assume log-

normal distributions to match the distributions of public datasets on taxi operations from 

the City of Chicago (City of Chicago, 2023) and the City of New York (New York City 

Taxi & Limousine Commission, 2023a). For all other inputs, we assume normal 
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distributions with mean values equal to our assumed baseline scenario values and 

standard deviations selected based on a combination of real-world data and assumptions 

such that the resulting distributions fell within defined boundaries (see Appendix B for 

specific assumptions for each input). 

 

3.3.4 Scenario Analysis 

Cost per mile values for robotaxi services will depend on a number of operational 

factors that will vary by location and by time (e.g. future technological conditions). To 

account for these possibilities, we explore four alternative scenarios to our baseline 

robotaxi scenario and compare the fare per mile value for each: AV Advanced 

Technology, AV High Usage, AV Medallion System, and AV Lower Density Region. Table 

3-4 details the changes to specific model inputs for each scenario. 

AV Advanced Technology: This scenario captures operational improvements that 

may occur as the performance of the AV technology improves. Stephens et al. (2016) 

propose a 40%-80% reduction in insurance premiums for fully-automated vehicles due to 

lower potential accident rates. Fagnant and Kockelman (2016) assume reduced 

maintenance requirements for AVs due to smoother operation. Greenblatt and Saxena 

(2015) posit fuel savings of 80% due to more efficient fuel usage. For this scenario, we 

assume insurance reductions of 50%, fuel reductions of 20%, and maintenance reductions 

of 10%. We also assume that technology improvements reduce the demands on different 

workers, allowing robotaxi operators to increase the number of vehicles handled by each 

worker. Finally, we assume that the price of the AV technology decreases to the $10,000 

value used in prior studies.  
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AV High Usage: AVs are predicted to induce greater travel demand by opening 

up new mobility options for individuals (Appleyard & Riggs, 2017; Milakis & van Wee, 

2020; Wadud et al., 2016; Williams et al., 2020b). Higher utilization might also occur via 

greater sharing of rides which would reduce the number of unoccupied vehicle miles. 

Multiple AV companies are exploring business models that involve dual-use of their 

fleets for both passenger and goods delivery services which could further increase vehicle 

utilization and annual mileage (Cruise, 2023b; Perez, 2018). In this scenario, we increase 

annual mileage to 80,000 miles/year and the capacity utilization rate to 70%. We assume 

that higher vehicle use would increase maintenance costs by 20% due to greater wear on 

the vehicles and would also shorten the lifespans of the vehicle and the AV technology to 

4 years. 

AV Medallion System: Some U.S. cities such as New York and San Francisco 

regulate the number of taxis in operation by issuing a limited number of permits, 

typically called medallions. Over time, the value of these medallions in some cities has 

risen significantly. In 2019, the median price of a medallion in New York was 

approximately $225,000 (New York City Taxi & Limousine Commission, 2023b). Given 

their high price, medallions are often financed in a similar manner as a vehicle. As 

described in the Licensing section above, the regulatory scheme for robotaxis is not yet 

determined. Mo et al. (2021) propose limiting the number of licenses available for 

robotaxis to avoid overcrowding of the transportation network with these vehicles. In this 

scenario, we explore the impact of a medallion-based regulatory structure for robotaxi 

services, adopting the medallion financing scheme assumed by Nunes and Hernandez 

(2020). 
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AV Lower Density City: Private AV companies will only deploy commercial 

services in regions in which they can achieve profitability. This scenario investigates the 

economics of robotaxi deployment in a lower density city. We assume that in a lower 

density city, more individuals will own personal vehicles and that demand for robotaxi 

services will be lower, decreasing both the annual mileage and the capacity utilization 

rate. We assume an annual mileage of 64,000 and a utilization rate of 43.6%, 

approximate values for taxi-type services in Seattle (Cramer & Krueger, 2016; UITP, 

2020). The population density of Seattle is approximately 8,791.8 people/mi2 compared 

to Chicago’s density of 12,059.8 people/mi2 (US Census Bureau, 2020). Moreover, we 

assume that decreased usage will reduce the wear on the AV, increasing the vehicle and 

AV technology lifespans to 6 years.  
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Table 3-0-4: Changes to input values for each scenario. 

Scenario Scenario Description Scenario Value (change to means only) 

Advanced AV 

Technology 

Maintenance Reduced by 10% 

Insurance Reduced by 50% 

Fuel Reduced by 20% 

Remote Monitor Worker-to-vehicle ratio increased to 1:30 

Customer Support Worker-to-vehicle ratio increased to 1:30 

Field Support Worker-to-vehicle ratio increased to 1:8 

Coordinator Worker-to-vehicle ratio increased to 1:150 

AV Tech Price Decreased to $10,000 

High Usage  Annual Mileage Increased to 80,000 mi/year 

Maintenance Increased by 20% 

Capacity Utilization Rate Increased to 70% 

Vehicle Lifespan Decreased to 4 years 

AV Tech Lifespan Decreased to 4 years 

Medallion System Medallion price $225,000 

Down payment percent 20% 

Percent of down payment paid 

upfront 

25% 

Financing period for down payment 7 years 

Financing period for remaining 

medallion cost 

5 years 

Medallion interest rate 5.4% 

Medallion lifespan 20 years 

Lower Density 

Region 

Annual Mileage Decreased to 64,000 mi/year 

Vehicle Lifespan Increased to 6 years 

AV Tech Lifespan Increased to 6 years 

Capacity Utilization Rate Decreased to 43.6% 

 

 

3.4 Results 

 

3.4.1 Cost by Category and Fare per Mile Estimates 
 

Our simulation results reveal that while all AV robotaxi scenarios can achieve 

lower per-mile costs than non-AV taxi services, labor still remains a key operational cost 

for robotaxi services (Figure 3-1). The labor costs alone for the AV scenarios already 

exceed the total cost per mile estimates from most prior studies ($0.76-$1.04 /mile for 

this study, see Table 3-1 for estimates from prior studies). Technology advancements that 

allow for fewer workers to manage a greater number of vehicles could, however, 
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significantly reduce labor expenditures and allow for the low (<$1.50/mile) total 

operational costs predicted by prior studies (Table 3-5, AV Advanced Tech scenario). The 

AV Medallion System scenario has the highest operational cost per mile amongst the AV 

scenarios due to the added expense of the medallion, highlighting regulatory decisions 

that could impact the economic competitiveness of AV services.  

 

Figure 3-1: Operating costs by category for each scenario with 95% quantile bars from the Monte  
Carlo simulations of the total cost across all categories. 
  

 

Even with the additional labor roles, the labor costs for the AV scenarios remain 

significantly lower than those of the non-AV taxi service. Even with the added 

technology expense and substantial labor cost, the mean cost for the AV Baseline scenario 

is $1.99/mi compared to $2.74/mi for the Non-AV Taxi scenario. Assuming similar 

utilization rates and profit margins for all scenarios, these lower costs translate to lower 

fares (Figure 3-2). The mean estimated fare per mile for the Non-AV Taxi scenario is 

$6.03/mile compared to $4.52/mile for the AV Baseline scenario (Table 3-5), suggesting 
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that robotaxi providers could out-compete human-driven taxi services on price. Though 

the AV Medallion System scenario is the highest cost AV scenario, the lower utilization 

rate in the Lower Density City scenario results in a higher fare per mile value. We discuss 

the importance of utilization rates in the following section. 

 
Table 3-0-5: Mean total cost and mean cost by category estimates from the Monte Carlo 
simulations. 

  
Non-

AV 

Taxi 

AV 

Baseline 

AV 

Medallion 

System 

AV Lower 

Density 

City 

AV High 

Use 

AV 

Advanced 

Tech 

Cost ($/mi)           

Labor 2.27 1.02 1.02 1.04 0.83 0.76 

Cleaning 0.02 0.00 0.00 0.00 0.00 0.00 

Fuel 0.09 0.09 0.09 0.09 0.09 0.07 

General & 

Admin 
0.05 0.05 0.05 0.05 0.05 0.05 

Insurance 0.13 0.13 0.13 0.13 0.10 0.06 

Licensing 0.03 0.03 0.20 0.03 0.02 0.03 

Maintenance 0.06 0.06 0.06 0.06 0.07 0.05 

Tech Financing 0.00 0.52 0.52 0.44 0.53 0.03 

Vehicle 

Financing 
0.10 0.10 0.10 0.08 0.10 0.10 

Total Cost 

($/mi)       
Mean: 2.74 1.99 2.16 1.91 1.79 1.15 

Std. Dev: 0.14 0.13 0.14 0.13 0.12 0.07 

        Fare ($/mi)       

Mean: 6.03 4.52 4.87 5.01 2.95 2.84 

Std. Dev: 0.31 0.28 0.29 0.31 0.18 0.15 

 

To evaluate our findings in light of current taxi operations, we compare our 

estimated fare per mile values to existing fare data from two public datasets on taxi 

operations from the City of Chicago (City of Chicago, 2023) and the City of New York 

(New York City Taxi & Limousine Commission, 2023a). We use data from the year 2019 

to capture market conditions prior to the COVID-19 pandemic but during a period when 

taxis faced competition with established Transportation Network Company (TNC) 

services such as Uber and Lyft. We find that our mean non-AV taxi fare is similar to 
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those of Chicago and New York City, suggesting that our model is fairly reflective of 

current operational practice (Chicago: $5.70/mi, New York: $5.69/mi). 

 

Figure 3-2: Distribution of per-vehicle fare per mile estimates for each scenario from Monte Carlo  
simulations. 

 
 

3.4.2 Investigating Sensitive Inputs 

We perform two systematic sensitivity checks, one on the taxi-specific model 

inputs and one on the AV-specific model inputs, testing values 50% higher and 50% 

lower than the assumed values in the baseline scenario. We exclude model input values 

for which changes to the assumed value would not make logical sense (e.g., time 

conversion variables, number of days per year). We find that both models are most 

sensitive to capacity utilization rate and annual mileage (Figure 3-3). This sensitivity 

suggests that operational features may play a larger role than labor in determining the 

cost of future robotaxi services.  
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The AV Baseline model is also sensitive to the price and lifespan of the AV 

technology. Given that the technology price is expected to decrease over time, the AV 

Baseline results may be interpreted as a conservative estimate for how traditional taxis 

and robotaxis might compete with one another. The AV Advanced Technology scenario 

offers a more bullish picture of a future in which technology prices decline significantly. 

Even as technology costs decline, operational factors could impact the technology 

lifespan and subsequent technology financing costs. As one interviewee noted, “How 

many times does an AV need to get damaged such that, in the cost equation, it would not 

be profitable anymore?” (Interview 15). AV firms will need develop vehicle designs that 

can maintain or increase their vehicles’ lifespans and the lifespans of their AV 

technology suites to remain competitive. While perhaps not as influential as utilization-

related inputs, both models are also sensitive to the wages and labor ratios for their 

associated labor roles.  

 

To further investigate the most sensitive inputs, we compute how fares vary based 

on changes to the three most sensitive model inputs: capacity utilization rate, annual 

vehicle miles traveled, and labor ratios. Figure 3-4 shows these results for the Non-AV 

Taxi, AV Baseline, and AV Advanced Technology scenarios, with the bands reflecting 

95% quantile outputs from the Monte Carlo simulation results. The curves show how the 

fare changes with changes to each input, holding all other inputs constant. We select 

these three scenarios to capture status quo non-AV taxi operations, current robotaxi 

operations, and an optimistic scenario for future robotaxi services where the technology 

improves to achieve greater performance at lower cost. The points on each curve denote 
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the assumed value used for each scenario.  

The exponentially decreasing nature of these input parameters emphasizes the 

importance of robotaxi firms’ ability to achieve utilization rates equivalent to or higher 

than those of existing taxi services. If their usage falls relative to that of non-AV taxi 

services, they could lose their competitive edge in terms of lower fare per mile rates. 

Operational and technology advancements characteristic of the AV Advanced Technology 

scenario would give robotaxi firms greater leeway with such operational pressures and 

could allow them to expand into regions that have historically had lower taxi utilization.  

As Figure 3-4 demonstrates, fare per mile is also highly sensitive to high labor 

ratios (i.e., more workers required), but firms reach economies of scale relatively quickly. 

This sensitivity explains the notable difference in labor costs between the non-AV and 

robotaxi services shown in Figure 3-1. Though robotaxi firms may employ a greater 

number of types of frontline workers, the worker-to-vehicle ratios for those roles are 

lower than those for non-AV taxi roles. Taxi firms can—and presumably do—optimize 

their dispatcher-to-vehicle ratios but are limited by their need to always have a driver 

operating each vehicle. In contrast, robotaxi firms can have remote monitors and 

customer service agents manage greater numbers of vehicles at a time.  

At a labor ratio of approximately three vehicles per worker (e.g., per remote 

monitor), the mean fare per mile for the AV Baseline scenario reaches approximately $6, 

the estimated mean value for the Non-AV Taxi scenario. One interviewee with experience 

in the airline industry noted that flight dispatchers—a role which the interviewee 

described as more equivalent to the remote monitor position than an air traffic 

controller—typically work at around a 1:5 worker-to-aircraft ratio (Interview 25). A 1:5 
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ratio would raise the mean estimated fare per mile value to over $5 for the AV Baseline 

model, which is still lower than that of a non-AV taxi service. While we did not use this 

ratio in our baseline scenario, we note that regulation that limits how many vehicles each 

worker can monitor could result in higher costs for robotaxi firms and limit their 

competitiveness against existing services. 

 Striving for the lowest possible number of workers, however, may not be 

necessary either. After an initial steep decline, fare per mile values are relatively similar 

for labor ratios of 1:15 or higher. Some prior studies have assumed ratios of one remote 

monitor for 80 vehicles (Negro et al., 2021). Striving for such a high number of vehicles 

per monitor might not only impose cognitive overload challenges for the monitor 

(Mutzenich et al., 2021), but it may offer fairly marginal cost reductions. In the future, 

AV firms will have to weigh these marginal reductions against impacts to service quality 

for their passengers, as well as performance consequences for their employees (e.g., 

mental workload, situational awareness).  
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TEXT 

X

Figure 03-3: Top ten most sensitive model inputs for the AV Baseline and Non-AV Taxi models. 
Input values were varied 50% higher and 50% lower than the assumed values 

 

Figure 03-4: Estimated mean fare per mile values across a range of A) capacity utilization rates, B) annual vehicle miles traveled values, 
and C) labor ratios. 

Colored bands indicate 95% quantile bands from the Monte Carlo simulations. Black points mark the assumed values used to the 
scenarios. 
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3.4.3 Wage Outcomes 

We now turn to an examination of the differences in wages between frontline 

workers in the taxi and robotaxi systems. Based on the roles examined in this study, we 

find that wages would shift higher for frontline workers in an AV service (Figure 3-5), 

but the total number of workers would decrease by approximately 57% for the AV 

Baseline scenario (from 216 to 93 workers to service a 100-vehicle fleet). In the 

Advanced AV Technology scenario, the total number of workers decreases by 

approximately 76% due to increases in the number of vehicles managed by the labor 

roles, but the distribution of the wages remains similar to that of the AV Baseline 

scenario. For the AV scenarios, wages follow a bimodal distribution, with the limited 

number of coordinator roles earning higher wages than the field support, customer 

service, and remote monitor roles, which make up most of the labor force. We emphasize 

that these distributions do not capture other labor roles and job numbers that may be 

created to support AV services for the development and production of AVs, their 

distribution, and roles involved in a potentially expanded upgrades and repairs industry 

(Chamber of Progress, 2024). 

 



88 
 

 
 
Figure 03-3: Estimated percent of workers that would fall within a given wage range for the Non-
AV Taxi, AV Baseline, and AV Advanced Technology scenarios. 

Plotted values depict the mean values from the Monte Carlo simulations (i.e., mean value for 
estimated total workers and mean values for estimated percent of workers within each wage 
bin).  

 
 
 

3.5 Discussion 
 

In this study, we provide the first model and analysis of robotaxi services with 

labor assumptions that are grounded in currently deployed robotaxi services in the U.S. 

Our estimated labor cost of $1.02/mi is higher than nearly every prior estimate: $0.01-

0.19/mi (depending on the country) (H. Becker et al., 2020), $0.21/mi (Bösch et al., 
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2018), $0.22-0.23/mi (depending on utilization) (Negro et al., 2021), and $0.34/mi 

(Wadud, 2017; Wadud & Mattioli, 2021). Only Nunes and Hernandez (2020) suggest the 

potential for a higher labor cost than our estimate, offering an estimate ranging from 

$0.10-$2.40/mi for cleaning and safety oversight services. The high end of their estimate 

range assumes a remote monitor to vehicle ratio of 1:5, which would significantly drive 

up the labor cost (a finding mirrored in our sensitivity analysis); however, using our AV 

Baseline assumption of 1:16 for the remote monitor to vehicle ratio, their labor cost 

estimate drops to approximately $0.15/mi, aligning with the low estimates from prior 

studies. Our inclusion of additional labor roles that are a part of current robotaxi services 

reveals that robotaxi labor costs are substantially higher than previously expected.  

Nonetheless, even after accounting for higher labor expenditures and for 

technology costs that are more representative of the current state of technology, our 

results still align with prior findings that robotaxi services could out-compete traditional 

taxi services on price and that utilization rates and annual mileage remain the most 

influential factors affecting robotaxi competitiveness (Negro et al., 2021; Nunes & 

Hernandez, 2020). If regulation or technological limitations result in higher worker-to-

vehicle ratios, however, labor costs could grow to levels that limit robotaxi 

competitiveness.  

Our results from the AV Advanced Technology scenario also align with prior 

studies’ findings that even with low labor costs, robotaxi services are unlikely to achieve 

lower costs than personal vehicle ownership (Kuhnimhof & Eisenmann, 2023; Nunes & 

Hernandez, 2020; Wadud & Mattioli, 2021). For example, Kuhnimhof and Eisenmann 

(2023) find that mobility on demand prices—a category of services which includes 
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robotaxis—would need to drop to around $0.52/mile to notably impact private car usage; 

our most optimistic scenario (AV Advanced Technology) results in $0.72/mile for labor 

costs alone and a total cost of $1.15/mile. 

In addition to supporting conclusions about the economic competitiveness of 

robotaxis, the granularity in robotaxi labor roles revealed in our analysis extends our 

knowledge in two important ways. First, greater granularity allows researchers and 

practitioners to better understand the bounds for reducing labor costs based on critical 

technological and operational considerations. There are practical limits to how quickly a 

human can clean delicate sensors or how quickly a worker can travel to respond to an 

accident. For remote monitors, these limitations include challenges with maintaining 

situational awareness (Mutzenich et al., 2021). Service providers must consider labor 

ratios and labor costs not only to achieve target costs, but also to achieve target levels of 

quality and safety of their services. By cataloguing the many different labor roles 

involved in robotaxi services, this study enables researchers and practitioners to critically 

examine these operational considerations for different roles and how they might impact 

service quality and safety. Researchers may also use these additional considerations to 

refine future simulation studies of AV services. 

Secondly, there is significant interest in how AV services will impact jobs, 

particularly regarding where job losses might occur, how many jobs may be affected, and 

the nature of new, emerging jobs (Leonard et al., 2020). The sensitivity of our model to 

utilization suggests that robotaxi services may remain limited to regions like dense urban 

areas that offer sufficiently high demand, potentially limiting where labor displacement 

for taxi and ride-hailing drivers might occur. We note that the populations of dense, urban 
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regions are also predicted to have more positive perceptions of AVs and higher predicted 

AV adoption rates (Bansal et al., 2016; Krueger et al., 2016).  

While we do not attempt to offer economy-level predictions about the numbers of 

jobs lost or gained due to vehicle automation12, we do provide an early estimate for how 

robotaxis might impact labor forces on a more localized, sector-based scale based on the 

labor ratios and utilization rates for which robotaxi firms may strive. We find that these 

impacts could range from a potential 57 to 76% reduction in the number of frontline 

workers. However, the distribution of wages in jobs supporting robotaxi services is 

shifted up significantly higher than that of jobs supporting traditional taxi services. We 

emphasize that automation often reshapes labor in unexpected ways (NASEM, 2017) and 

that other jobs may also emerge to support robotaxi services in the future.  

 

3.6 Limitations 
 

We acknowledge a number of limitations in this study. As with prior studies, we 

base many of our assumptions on data for existing taxi services due to the limited scale of 

existing robotaxi deployments. Vehicle automation could impact operational costs in 

unexpected ways not captured by our scenarios. Moreover, we do not yet know how 

public preferences for autonomous services might unfold and impact demand (see 

Gkartzonikas and Gkritza (2019) for a review of stated preference and choice studies on 

this topic) and whether robotaxi firms could realistically achieve the capacity utilization 

rates and mileage values assumed in the AV Baseline scenario.  

                                                           
12 See Beede et al., (2017), Groshen et al. (2018), and Chamber of Progress (2024) for U.S. estimates or 

Alonso Raposo et al. (2019) for European Union estimates. 



92 
 

In this study, we are focused on a U.S. context in which labor costs are relatively 

high. Becker et al. (2020) find that the cost-saving effects of automation are stronger in 

higher-income locations than in lower-income locations where labor costs may not be 

reduced as significantly by automation. Thus, the results of this study regarding robotaxi 

competitiveness, job losses, and wage changes would generalize to other higher-income 

contexts, but may not hold for lower-income locations.  

We consider a specific set of labor roles that does not capture additional jobs that 

may be involved in the technology training, development, production, and distribution of 

AVs. Altering the system boundary of analysis could change the results in terms of the 

number of jobs required to support robotaxi services, their associated wages, and 

potentially the geographic location of those jobs (as occurred with prior forms of 

automation and offshoring of labor (Goos et al., 2014)). Additional roles such as an in-

vehicle attendant may also be critical for early adoption of robotaxi services and for 

providing critical in-person support to specific rider populations for whom the service 

would otherwise be inaccessible (Kaplan & Helveston, 2023b; Kyriakidis et al., 2020).  

A feature that could not only offer greater profitability for robotaxi firms but also 

promote more sustainable transportation systems is shared rides. Though not explicitly 

included in our model, shared rides would allow for higher per-trip fares without raising 

the trip price for individual riders and could increase capacity utilization for individual 

vehicles. As with existing taxi-type services, however, interest in shared rides is limited, 

with most riders preferring not to share rides (Kang et al., 2021; Kaplan & Helveston, 

2023b; Krueger et al., 2016). Powertrain type could also impact the sustainability of AV 

services. We base our model on hybrid vehicles since they are used in the majority of 



93 
 

current commercial operations, but we acknowledge the value of a combined electric and 

automated future. Switching to fully-electric fleets could reduce some operational costs 

(i.e., lower fuel cost) but at the expense of higher up-front prices, which would increase 

the vehicle financing costs (Fulton et al., 2017). Furthermore, AV computational 

requirements have been shown to reduce electric ranges by 10-15% (Mohan et al., 2020), 

which could limit their feasibility to achieve higher utilization rates and / or annual 

mileage.  

There may be other costs that we have omitted; Litman (2023), for example, notes 

that vehicle automation would not only increase capital expenditures, but also add 

additional annual software, mapping, and subscription costs. We do not explicitly model 

costs these as we consider them part of the AV technology costs. Finally, this study 

assumes labor ratios based on current practice for robotaxi services that still operate in 

limited operational design domains. Further research within the domain of human factors 

engineering could provide better estimates for AV service labor ratios that are safe and 

economically efficient. 

 

3.7 Conclusion 
 

As robotaxis expand to an increasing number of cities, transportation planners and 

researchers need to consider the full operating costs of AV services and how they might 

realistically substitute or complement existing services. This competition will not only 

determine how AVs might impact the safety, environmental sustainability, and 

accessibility of transportation systems but also how AVs might impact the jobs of current 

transportation workers. This study refines prior AV cost models by detailing frontline 
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labor roles involved in existing robotaxi services and incorporating technology estimates 

more reflective of current prices. We find that—after accounting for additional labor 

roles involved in current robotaxi services—labor costs for robotaxis are far higher than 

previously estimated. Nonetheless, despite these costs robotaxis can still out-compete 

traditional taxis on price, and utilization rates and annual mileage will ultimately serve as 

the limiting factors for robotaxi competitiveness. If jobs shift from traditional taxi to 

robotaxi services, the number of jobs could decrease by between 57 to 76%, though the 

distribution of wages would shift higher. Significant uncertainty remains regarding how 

robotaxi services will impact our transportation networks and the labor systems that 

support them. We hope that these results can help to inform dialogue between planners, 

policymakers, workers, and members of the public about how emerging technologies not 

only could—but should—interact with our transportation systems.  
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Chapter 4: Public Preferences for AV versus Non-AV Modes 
 

 

The objective of this study is to investigate public preferences for different 

autonomous (ride-hailing, shared ride-hailing, bus) and non-autonomous (ride-hailing, 

shared ride-hailing, bus, rail) modes. This chapter is based on Kaplan and Helveston 

(2023b), published in Transportation Research Record. In this chapter, we use the term 

automated to refer to highly automated (autonomous) vehicles in which the automated 

driving system performs the entire driving task. 

 

4.1 Introduction 

Autonomous vehicles (AVs) have the potential to dramatically disrupt current 

transportation patterns and practices, and how they will interact with or displace current 

transportation modes remains uncertain. Over the past decade, ride-hailing companies 

like Uber and Lyft have raised billions of dollars by promoting the promise of a future of 

driverless taxi fleets that could potentially replace car ownership entirely (Korosec, 2022; 

Shetty, 2020; Somerville, 2019). At the same time, transportation planners are grappling 

with how AVs might shape future transportation systems, especially public transportation 

systems.  

Transit systems have already had to reckon with competition from ride-hailing 

services that offer greater flexibility and convenience than many transit options (Cats et 

al., 2022). If vehicle automation enables significant price decreases and increased 

availability for ride-hailing services, some fear that it could undercut public transit, which 

could have important implications for the environment and transportation equity (Creger 

et al., 2019; Williams et al., 2020b). Public transit plays a critical role in reducing 
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emissions from transportation (L. Bailey et al., 2008), mitigating road congestion, and 

providing basic mobility for individuals with limited to no other transportation options. 

As one U.S. Federal Highway Administration report highlights, over 90% of public 

assistance recipients lack access to a vehicle and rely on public transit (FHWA, 2002). 

Ultimately, the extent to which individuals adopt automated transportation modes 

will drive many system-level outcomes. Research on preferences for AVs is both 

immature and inconclusive, especially with regard to competition with transit. Some 

studies have found that individuals prefer automated modes over public transit (Krueger 

et al., 2016; Steck et al., 2018), while others find that current transit users lack significant 

interest in automated modes (Kim et al., 2019; Winter et al., 2020). Furthermore, public 

attitudes towards and preferences for public transit are often context dependent. Despite 

the AV testing and pilots occurring in multiple cities across the United States, limited 

research exists regarding the potential impacts of automation on the billions of annual 

public transportation trips taken in the U.S. each year (9.9 billion in 2019) (APTA, 2022). 

Prior U.S.-based studies have either focused on one mode or omitted transit, limiting the 

ability to compare preferences between different automated modes (Daziano et al., 2017; 

Haboucha et al., 2017; Kassens-Noor et al., 2020; Kim et al., 2019; Lavieri & Bhat, 2019; 

Nair & Bhat, 2021; Saeed et al., 2020; Zhong et al., 2020). This study aims to fill this gap 

by investigating the public preferences for transit and ride-hailing modes with and 

without automation. We center our analyses on the following two research questions: 

1. What are individuals’ preferences for automated modes (ride-hailing, shared ride-

hailing, bus) and non-automated modes (ride-hailing, shared ride-hailing, bus, 

rail)? 
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2. Under what conditions might automated ride-hailing services be competitive with 

public transit modes? 

We address these questions using data from an online choice-based conjoint survey 

fielded in the Washington, D.C. Metropolitan Region (N = 1,694) in October 2021. We 

estimate discrete choice models of public preferences for different automated and non-

automated transportation modes, and then we use the estimated models to simulate future 

marketplace competition across a range of trip scenarios. 

 

4.2 Literature on AV Preferences  

Many studies on preferences for AVs have focused on factors associated with 

private AV ownership, such as consumers’ perceived comfort with riding in an AV and 

their willingness to pay for features associated with different levels of automation 

(Daziano et al., 2017; Moody et al., 2020; Nair & Bhat, 2021; Shin et al., 2015). These 

studies often employ Likert scales (typically ranging from 1 to 5) or other similar rating 

systems to assess attitudes towards different automated modes. While these studies 

provide insights into general consumer perceptions of AVs, they lack the ability to gauge 

potential substitution patterns between automated and non-automated transportation 

modes.  

  To address this, some researchers have used choice-based conjoint (CBC) 

surveys. In CBC surveys, respondents choose from a set of options with varying 

attributes, and researchers estimate discrete choice models to infer the relative importance 

of each attribute and the relative desirability of each option. Conjoint surveys offer 

unique advantages, including the ability to explore hypothetical products, present 
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multiple choice sets to the same respondent, fix all attributes of a given option, and avoid 

multicollinearities (Louviere et al., 2000). Rather than gauge preferences for different 

modes in isolation, conjoint surveys allow researchers to simulate the menu of 

transportation options available to an individual, typified by the experience of looking up 

directions via GoogleMaps or via a transportation planning app. Table 4-1 presents a 

selection of recent CBC studies investigating public preferences for different automated 

and non-automated transportation modes. The majority of these prior studies compare 

automated modes to conventional, non-automated private cars. 
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Table 4-0-1: Summary of modes investigated in prior AV conjoint studies. 

  Non-Automated Automated 

Study Location Private 

Car 

Ride-

hailing 

Shared  

Ride-

hailing 

Transit Other 

(walking, 

biking) 

Private 

Car 

Ride-

hailing 

Shared  

Ride-

hailing 

Transit 

Krueger et al. 

2016* 

Australia X X X X X 
 

X X 
 

Yap et al. 2016 Netherlands X 
  

X X 
 

X X 
 

Steck et al. 2018 Germany 
   

X X X X X 
 

Ashkrof et al. 

2019 

Netherlands X 
  

X 
  

X 
  

Winter et al. 2020 Netherlands X X 
 

X 
  

X 
  

Etzioni et al. 2020 Cyprus, UK, 

Slovenia, 

Montenegro, 

Hungary, 

Iceland 

X 
    

X X X 
 

Daziano et al. 

2017 

U.S. X 
    

X 
   

Haboucha et al. 

2017 

U.S., Canada 

& Israel 

X 
    

X X 
  

Lavieri & Bhat 

2019 

U.S. 
      

X X 
 

Gurumurthy & 

Kockelman 2020 

U.S. 
     

X X 
  

Zhong et al. 2020 U.S. X     X X X  

This study Washington, 

D.C. 

 
X X X 

  
X X X 

*Non-automated modes were collected as a self-reported reference trip 
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The general consensus across most of these studies is that conventional, non-

automated vehicles continue to dominate preferences. For example, in Krueger et al.’s 

(2016) conjoint study of 435 residents of major metropolitan areas in Australia, 

respondents chose an automated mode in only 28% of the choice situations. Haboucha et 

al. (2017) surveyed 721 commuters in Israel, the United States, and Canada and found 

that 44% of respondents preferred conventional vehicles over private or shared AVs. This 

preference was even more pronounced among the North American respondents, with 

54% preferring conventional vehicles. Yap et al. (2016) asked Dutch travelers about their 

interest in AVs as a transportation option for filling the last mile trip between a train 

station and a traveler’s final destination, and even in this limited context respondents 

mostly selected the individual vehicle alternative over all other transportation options. 

Etzioni et al. (2020) surveyed 1,669 individuals across six EU countries and similarly 

found strong preferences for conventional vehicles, with respondents selecting 

conventional vehicles in 70% of the choices. Respondents in Zhong et al.’s (2020) survey 

of U.S. residents in small and medium metropolitan areas in the U.S. preferred their 

current private vehicles over private AVs and AV ride-hailing options. These studies 

signal that individuals are not likely to relinquish their personal vehicles in favor of AVs 

in the near future.  

The strong preferences for conventional vehicles, however, may mask other 

potential substitution effects that could occur with the introduction of AVs. Many of the 

aforementioned studies restricted their survey sample to individuals who have a driver’s 

license, with some also requiring that respondents drive a personal vehicle frequently 

(Ashkrof et al., 2019; Haboucha et al., 2017; Zhong et al., 2020). In doing so, these 
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studies fail to capture the preferences of individuals who do not currently rely on personal 

vehicles as their primary mode of transportation, including individuals with disabilities or 

those who do not own a car. Such individuals are typically the primary users of public 

transit. Moreover, even individuals who typically use their private vehicles might use 

transit for specific types of trips (e.g., traveling within the city after commuting from the 

suburbs, trips where parking is expected to be difficult, etc.). Substitutions of these trips 

with AVs, in conjunction with changing transportation patterns for frequent transit users, 

would likely have a greater impact on transit ridership.  

The existing literature on AV substitution with transit is limited and inconclusive. 

Some studies find a preference for AVs over transit modes, such as in Steck et al.’s 

(2018) survey of 173 Germans. In the study, respondents could select from among 

privately owned AVs, automated ride-hailing (both shared and non-shared), walking, 

biking, and public transit. Overall, respondents found the private AV option most 

attractive, followed by AV ride-hailing, and finally transit. Ashkrof et al. (2019) explored 

preferences for conventional cars, AV ride-hailing, and transit among a sample of 663 

Dutch respondents. Individuals similarly preferred AVs over transit, especially when the 

choice question was framed in terms of a long-distance trip. Yet other studies suggest 

more limited competition of AVs with transit. In Yap et al.’s (2016) study of AVs as a 

potential egress mode for train trips, first-class train passengers valued AVs more than 

transit modes, but second-class train passengers actually preferred transit over AVs. 

Winter et al. (2020) identified different classes of users amongst a sample of 796 Dutch 

survey respondents and found that respondents who currently commute by public 

transport actually show the lowest preference for automated modes, affirming Krueger et 
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al. (2016)’s finding that current transit users were not more likely to switch to an 

automated mode. 

There are some mode features that are particularly relevant when considering an 

AV future. Ride-sharing (i.e., riding with a stranger who is traveling in a similar 

direction) is already available in some cities via services like UberPool and Lyft Shared 

(Lyft, 2022b; Uber, 2022b). Though ride-hailing companies canceled these services 

during the COVID-19 pandemic, some are now starting to reintroduce them. Sharing 

rides decreases the cost for both riders, and these cost savings could become even more 

substantial if the services are automated. Further, sustainability advocates emphasize that 

fleets of shared AVs are critical for ensuring a sustainable AV future (Creger et al., 

2019). Despite enthusiasm from environmental advocates, the public seems less 

interested in a future of shared rides. As of 2017, pooled rides comprised just 20% of all 

Uber rides and 40% of all Lyft rides (Shaheen & Cohen, 2019), and current literature 

suggests that these preferences may persist in an AV future. In Lavieri and Bhat’s (2019) 

conjoint study on automated ride-hailing with sharing and non-sharing options, 

respondents chose to ride alone in 48.3% of choice occasions with work trips and 54% of 

choice occasions for leisure trips. Over the past few years, greater exposure to ride-

sharing services as well as the COVID-19 pandemic may have altered individuals’ 

attitudes towards sharing. Thus, sharing as a feature of automated ride-hailing services 

warrants further investigation. 

A second mode feature—the presence of an AV attendant—is associated with 

additional services that a driver might fulfill beyond operating the vehicle. Though AVs 

would be operated by computer systems, an attendant could help individuals enter and 
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exit the vehicle—a potential barrier to AV use for elderly individuals and individuals 

with disabilities—and provide a social monitoring function. This monitoring function 

might affect who feels comfortable using shared AV services.  

The consensus from many stated preference surveys and choice studies on AVs is 

that women appear less likely to use AVs than men (F. Becker & Axhausen, 2017; 

Gkartzonikas & Gkritza, 2019), and some hypothesize that this hesitation towards AVs 

may stem in part from personal security concerns (Khoeini, 2021; Nair & Bhat, 2021; 

Polydoropoulou et al., 2021). Dong et al. (2019)’s survey of University of Pennsylvania 

employees found that only 13% of respondents would agree to ride an automated bus 

without an employee onboard. Similarly, in their multi-country survey on potential AV 

use, Kyriakidis et al. (2020) asked respondents about their willingness to use an AV when 

a human operator was and was not onboard. The study found that people were more 

willing to travel in an AV and to allow their children to travel in an AV with an operator 

present. These findings suggest that operator presence might be an important feature that 

might impact whether individuals would prefer AVs over traditional modes. While some 

AV companies are already operating their vehicles with attendants onboard in small 

pilots (Fort Worth Business Press, 2021), companies will eventually need to decide 

whether the attendant feature is worth the additional operating cost in large-scale 

deployments.  

Conjoint studies have enabled an avenue of research to explore potential 

substitution patterns between various transportation modes in an AV future. This area of 

research, however, is still quite immature, with many studies conducted only within the 

past six years. Few studies have considered the impacts of AVs on current transit use, and 
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no conjoint studies have examined impacts of AVs on transit in a U.S. context. 

Furthermore, there is a lack of understanding about key features associated with AV use, 

such as ride-sharing and the presence of an AV attendant. We address these gaps by 

fielding a U.S.-based conjoint study on preferences for automated (ride-hailing, shared 

ride-hailing, bus) and non-automated (ride-hailing, shared ride-hailing, bus, rail) modes. 

 

4.3 Methods  

AV services are primarily in the pilot and development phases, limiting the 

availability of revealed-preference data. In this study, we use a stated-preference conjoint 

approach to measure public preferences for various automated modes. Choice-based 

conjoint (CBC) analysis has a history of use in the automotive industry for evaluating 

preferences for both traditional vehicles and new vehicle technologies such as electric 

vehicles (Helveston et al., 2015). It has also been used in a number of recent studies on 

automated driving (Correia et al., 2019; Daziano et al., 2017; Haboucha et al., 2017; 

Krueger et al., 2016; Yap et al., 2016; Zhong et al., 2020). In CBC surveys, individuals 

evaluate a series of randomized alternatives and choose which option they prefer. From 

these selections, we can estimate discrete choice models to quantify the relative 

importance of each attribute and to simulate market competition between hypothetical 

choice sets. An advantage of CBC surveys is that one can create hypothetical choices in 

order to tease out preferences for different attributes that might otherwise be highly 

correlated in the marketplace (e.g., determining the importance of price versus travel time 

which are often directly correlated).  

Ideally, we would calibrate the estimated models using real market data or 
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combined revealed-preference (RP) and stated-preference (SP) data since real-world 

behavior may deviate from reported behavior on a survey for reasons such as social 

signaling and social adoption (Cherchi, 2017; Jensen et al., 2017). Unfortunately, RP and 

market data for the various types of automated modes explored in this study are not 

currently available. The inability to effectively calibrate model results remains a 

limitation of studies on automated vehicles, though we attempted to minimize this 

limitation by briefing respondents on the features of potential automated modes, further 

discussed below. The following sections describe the design of this study’s CBC survey 

and subsequent modeling approach. Survey design and data analysis were conducted in R 

using the cbcTools package (Helveston, 2022), and the full survey, data, and code used is 

available at: https://github.com/lkaplan25/AV_conjoint_survey_2022  

 

4.3.1 Survey design and target sample 

The survey was created and administered using formr.org—a customizable, R-

based survey platform (Arslan et al., 2020). The survey was fielded within the 

Washington, DC Metropolitan Region to situate decision tradeoffs within a local context. 

The survey included three main parts: 1) background information and current 

transportation routines, 2) choice-based conjoint questions, and 3) demographic 

questions. The background information section included a video clip describing the six 

levels of automation as defined by the Society of Automotive Engineers (Pennsylvania 

Department of Transportation, 2017; SAE, 2021). We defined automated modes as level 

5 vehicles with the following description: “Vehicles that are automated would be 

operated by computer systems with no assistance from a human driver. No option to take 
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control of the vehicle would be available.” We also provided pictures and brief 

descriptions for how an automated bus, ride-hailing service, and shared ride-hailing 

service are expected to function. 

In part two, we asked respondents eight choice-based conjoint questions. For each 

question, we asked respondents to imagine they were going out for an evening leisure 

activity and to choose between four modes (bus, rail, ride-hailing, and shared ride-

hailing) with randomized attribute values. Figure 4-1 shows an example choice question. 

We selected this framing to provide new insights into AV preferences for non-commuting 

trips. The majority of prior AV preference studies have focused on commuting journeys, 

yet non-commuting trips account for approximately 78% of trips within the Washington, 

DC Metropolitan Region (Joh, 2020; Thomopoulos et al., 2021). Additionally, we 

hypothesized that focusing on evening trips would increase any potential value of having 

an attendant on board, per the aforementioned discussion regarding personal security. 

Future studies might investigate the extent to which time-of-day framing impacts 

individuals’ responses.  

The five attributes investigated in this study were mode, automation (yes/no), 

attendant (yes/no), total trip time, and price. While other attributes, such as wait time, 

have been found to impact individuals’ mode choices (Krueger et al., 2016; Yap et al., 

2016), respondents on initial pilot surveys reported feeling overwhelmed by the 

complexity of the choice questions that included more attributes, including wait time. 

Balancing design complexity with showing realistic choices remains a challenge with the 

CBC method, and as Cherchi and Hensher (2015) note, the acceptable level of design 

complexity can vary amongst contexts, with some researchers recommending inclusion 
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of no more than six different attributes. During the first pilot test of our survey, 

respondents reported feeling overwhelmed by the complexity of the choice questions, 

which included wait time as an additional attribute. We subsequently chose to decrease 

the number of attributes to focus on identifying potential impacts of attendant presence 

for automated modes, which has received less attention in the literature, and we 

acknowledge this narrower focus as a limitation of our study. 

 
Figure 04-1: Sample choice-based conjoint question. 

To ensure that the price and time levels shown were calibrated to local market 

conditions in the Washington, DC Metropolitan Region, we determined ranges for the 

attribute values for each mode based on current travel times and prices as determined by 

GoogleMaps, the CityMapper transportation planning app, and ride-hailing price 

calculators (see Table 4-2) (Cherchi & Hensher, 2015; Citymapper, 2022; Lyft, 2022a; 

Uber, 2022a). The times and prices were mode-specific (i.e., a bus trip could cost $1, $2, 

$3, $4, or $5 whereas a ride-hailing trip could cost $5, $7, $10, $12, or $15). We applied 

discounts of between 20-50% of the regular ride-hailing price to generate prices for the 

shared ride-hailing mode to simulate cost-savings from shared rides. Shared ride-hailing 

travel times were also set between 80-120% of the ride-hailing times. While shared rides 

often have longer trip times, shorter times can occur if an available shared vehicle is 

already closer to the rider than a solo vehicle. In addition to capturing status quo prices 

and travel times, we also included a limited number of more extreme values to reflect 
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uncertainty about how automation might affect prices and travel times in the future. Only 

the bus, ride-hailing, and shared ride-hailing modes could be automated, and only 

automated modes could include an attendant. The survey explained the attendant feature 

as follows: “Vehicles with an attendant would have a company official on board to help 

passengers. This attendant would not be responsible for operating the vehicle.”  

To design our choice experiment, we started by creating a full factorial design of 

experiment (DOE) matrix using all of the combinations of attributes for each individual 

mode but with the restrictions previously described (e.g. only automated modes could 

have an attendant), resulting in a total of 40,000 possible choice questions. The choice 

questions were then arranged such that each respondent answered eight choice questions 

randomly drawn from this DOE, with checks added to ensure that no one respondent saw 

a repeated choice question and that each choice question showed each of the four 

available modes. The use of random choice set assignment over other design strategies 

(such as D-optimal designs) was chosen as a trade-off in parameter precision and the 

ability to observe potential interaction effects; a randomized design avoids confounding 

interaction and main effects at the expense of statistical precision (Louviere et al., 2000).  

Rather than generate a single fractional factorial design, each respondent was 

shown a randomly generated set of choice sets drawn from the full set of possible 

combinations. This approach ensured sufficient variation across all combinations of 

attributes so as to be able to identify possible interaction effects. The primary 

disadvantage of this approach is that the resulting estimated standard errors may be larger 

than they otherwise could have been had we used a more efficient design. The 

researchers also checked to ensure that each respondent saw a variety of attribute levels 
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and that no attribute level appeared to dominate. The final section of the survey collected 

demographic information including age, gender, race, education level, and household 

income. The survey also captured information that could help identify individuals who 

may face transportation barriers. These questions included whether the respondent has 

any type of disability, has a smartphone, and has access to a bank account (full survey 

available in Appendix C.1). 

Prior to a full launch of the survey, we conducted two pilot surveys using Amazon 

Mechanical Turk (N = 287) to test for areas of confusion, potential dominant alternatives, 

and potential survey fatigue. As mentioned above, we adjusted the survey design 

following the initial pilot test and then performed a second pilot test to check the revised 

survey design. After pilot testing, we partnered with Dynata, a market research firm, to 

recruit the full survey sample. Dynata recruits survey respondents using multiple types of 

incentives including cash and donations to charity. We limited the survey sample to 

adults (individuals over 18) who live within the Washington, DC Metropolitan Region 

(screened for using zip codes).  

 

 

 

 

 

 

 

 



110 
 

Table 4-0-2: Full range of survey attributes and levels. 
Travel time and price are mode-specific. 

Attribute Levels 

Mode Ride-hailing, Shared ride-

hailing, Bus, Rail 

  

Automated Yes/No 

  

Attendant Present Yes/No 

  

Travel time (minutes)  

Ride-hailing  

(Shared ride-hailing travel time set at 

between 80-120% of ride-hailing time) 

15, 20, 25, 30, 35 

Bus 20, 25, 30, 35, 40 

Rail 15, 20, 25, 30, 35 

  

Price ($)  

Ride-hailing  

(Shared ride-hailing set at 50-80% of 

the associated ride-hailing price) 

5, 7, 10, 12, 15 

Bus 1, 2, 3, 4, 5 

Rail 2, 3, 4, 5, 6 

 

4.3.2 Model specification 

We model choice using a random utility framework, which assumes that 

individuals will select the alternative that maximizes an underlying random utility model. 

The utility model is comprised of the observable attributes, 𝒖𝒊𝒋 = 𝒇𝒊(𝒙𝒋), as well as an 

error term, 𝜺𝒊𝒋, that captures unobservable attributes. Using this model, we can calculate 

the probability, 𝑷𝒊𝒋, of an individual choosing a given alternative as the probability that 

the utility of one alternative j is greater than the utilities of the other alternatives. We 

assume that the error term follows a Gumbel extreme value distribution, yielding 

equation 4.1, a convenient closed-form expression that an individual will choose option j 

from the choice set JC,, cf. Train (K. E. Train, 2009): 

𝑷𝒊𝒋 = 
𝒆
𝒗𝒋

∑ 𝒆𝒗𝒌  𝒌∈𝑱𝒄

     ∀ 𝒄 ∈ {𝟏, 𝟐, 𝟑, …𝑪}, 𝒋 ∈ 𝑱𝑪      (4.1) 

In equation 4.1, c indexes a set of C choice sets, with JC representing the cth choice set 
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and 𝒗𝒋 capturing the observed portion of the utility model. The standard multinomial logit 

model (MNL) assumes that the error term is independently and identically distributed. 

Given that the survey collected several consecutive observations per respondent (often 

referred to as having a “pseudo-panel” structure), it violates this assumption of 

independence. To account for this pseudo-panel effect, we instead estimate mixed logit 

(MXL) models, a widely-used extension of the MNL model (Zhong et al., 2020). The 

MXL model allows for flexible substitution patterns and relaxes the assumption of 

independence of the error term (McFadden & Train, 2000). For this study, we assumed 

that the mode parameters are drawn from independent normal distributions across the 

respondent population. We also estimate separate travel time coefficients for each mode 

to capture how individuals may value their time differently when using different modes. 

The general utility model yields coefficient estimates in the “preference space” in 

which coefficients represent the respondent utility for marginal changes in attribute 

values. We instead specify a “willingness-to-pay” (WTP) space utility model in which 

coefficient estimates have units of dollars and represent the valuation for marginal 

changes in attribute values. This has several advantages, in particular the ability the 

directly interpret the coefficients independent of one another and across different models; 

in contrast, utility coefficients must be interpreted relative to one another within each 

model as each model could have a different error scaling (Helveston et al., 2018; K. Train 

& Weeks, 2005). The general WTP space utility model is shown in equation 4.2: 

𝒖𝒋 =  𝝀(𝝎′𝒙𝒋 − 𝒑𝒋) + 𝜺𝒋 ,          (4.2) 

where 𝒑𝒋 is price, 𝝀 is a scale parameter, 𝒙𝒋 is all non-price attributes, and 𝝎 is a vector 

of WTP coefficients for non-price attributes. For mixed logit models, directly estimating 
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WTP provides greater control over how WTP is assumed to be distributed across the 

population and has been found to yield more reasonable distributions of WTP compared 

to WTP computed from preference space model coefficients (Helveston et al., 2018; 

Sonnier et al., 2007; K. Train & Weeks, 2005). Equation 4.3 shows the full model used in 

the study, with explanations of the variable names in Table 4-3: 

 

WTP model for Mode, Automated Mode, and Automated Mode + Attendant  

(Relative to non-automated rail) 

 

𝒖𝒋 = 𝝀

(

 
 
 

𝜷𝟏𝒙𝒋
𝒕𝒊𝒎𝒆 + 𝜷𝟐𝒙𝒋

𝒕𝒊𝒎𝒆𝜹𝒃𝒖𝒔 + 𝜷𝟑𝒙𝒋
𝒕𝒊𝒎𝒆𝜹𝑹𝑯 + 𝜷𝟒𝒙𝒋

𝒕𝒊𝒎𝒆𝜹𝒔𝒉𝒂𝒓𝒆𝒅𝑹𝑯 

+ 𝜷𝟓𝜹
𝒃𝒖𝒔  +  𝜷𝟔𝜸𝜹

𝒃𝒖𝒔 + 𝜷𝟕𝝉𝜸𝜹
𝒃𝒖𝒔 

+ 𝜷𝟖𝜹
𝑹𝑯  +  𝜷𝟗𝜸𝜹

𝑹𝑯 + 𝜷𝟏𝟎𝝉𝜸𝜹
𝑹𝑯 

+ 𝜷𝟏𝟏𝜹
𝒔𝒉𝒂𝒓𝒆𝒅𝑹𝑯  +  𝜷𝟏𝟐𝜸𝜹

𝒔𝒉𝒂𝒓𝒆𝒅𝑹𝑯 + 𝜷𝟏𝟑𝝉𝜸𝜹
𝒔𝒉𝒂𝒓𝒆𝒅𝑹𝑯

−𝒑𝒋 )

 
 
 
+ 𝜺𝒋         (4.3) 

 

 

All models were estimated using the logitr R package which uses maximum 

simulated likelihood estimation to estimate mixed logit models (Helveston, 2021). The 

package includes the ability to appropriately account for data with a pseudo-panel 

structure by computing the probability that a respondent will make a sequence of choices 

when calculating the log-likelihood using the equation below (2009), where 𝑷𝒏𝒋 is 

defined by equation 4.4:  

𝑳 = ∑ ∑ 𝒚𝒏𝒋
𝑱
𝒋 𝐥𝐧𝑷𝒏𝒋

𝑵
𝒏 ,      (4.4) 

Given the non-convex nature of WTP space log-likelihood functions, we use a 

randomized multi-start search to identify multiple local minima in a search for a global 

solution.  
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Table 4-0-3: Description of conjoint model variables. 

Variable Description 

pj Price in US dollars 

xj
travelTime Total trip travel time in minutes 

δbus Dummy coefficient for bus mode type {1: yes, 0: no} (base level is rail) 

δRH Dummy coefficient for ride-hailing mode type 

δsharedRH Dummy coefficient for shared ride-hailing mode type 

γ Dummy coefficient for whether the mode is automated {1: yes, 0: no}  

τ Dummy coefficient for whether there is an attendant present {1: yes, 0: no}  

 

4.4 Results 

 

4.4.1 Sample description 

The final sample consisted of 2,023 respondents who completed the survey 

between October 4 and October 17, 2021. Respondents who answered all choice 

questions the same, whose total survey response times or conjoint question response 

times were too short, who incorrectly answered a simple attention check question, or who 

were missing demographic information necessary for the primary model and subgroup 

analyses were removed. After filtering the data based on these criteria, the final sample 

size was 1,694 respondents for a total of 13,712 choice-based conjoint responses. The 

final sample closely matched the demographics of the Washington, DC Metropolitan 

Region, as reported by the National Capital Region (NCR) Transportation Planning 

Board’s 2017/2018 Regional Travel Survey, a once-in-a-decade survey that collected 

detailed demographic and travel behavior information from approximately 16,000 

randomly selected area households within the Washington, DC Metropolitan Region 

(NCR TPB, 2021). The most significant difference between our sample and the reference 

sample was the over-representation of individuals who self-identified as male. Our results 

are robust with and without weights to account for this gender imbalance (weighted 
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model results are available in Appendix C.2). Table 4-4 presents descriptive statistics of 

the final survey sample.  

 

Table 4-0-4: Summary statistics of survey sample. 

Characteristic N = 1,6941 
Reference Sample 

(Regional Travel Survey) 

Gender   

Female 668 (39%) 52.3% 

Male 989 (58%) 47.7% 

Transgender/Gender Non-conforming 37 (2.2%) - 

Age   

18-24 120 (7.1%) 7.8% 

25-34 367 (22%) 17.8% 

35-44 577 (34%) 20.1% 

45-54 253 (15%) 17.3% 

55-64 133 (7.9%) 17.7% 

65-74 181 (11%) 13.4% 

75-84 51 (3.0%) 4.7% 

85+ 4 (0.2%) 1.3% 

Unknown 8 - 

Annual Household Income   

Less than $15,000 66 (3.9%) 3.0% 

$15,000 - $24,999 42 (2.5%) 2.7% 

$25,000 - $34,999 73 (4.3%) 3.2% 

$35,000 - $49,999 126 (7.4%) 6.4% 

$50,000 - $74,999 202 (12%) 12.9% 

$75,000 - $99,999 189 (11%) 15% 

$100,000 - $149,999 260 (15%) 24.8% 

$150,000 or more 736 (43%) 31.9% 

Education  - 

No High school or High School 142 (8.4%)  

Some College/Associate’s 342 (20%) - 

Bachelor’s degree 564 (33%) - 

Graduate or Professional Degree 639 (38%) - 

Unknown 7 - 

Bank Account Access  - 

No 28 (1.7%) - 

Yes 1,537 (91%) - 

Doesn’t use regularly 129 (7.6%) - 

Phone Access   

No cellphone 28 (1.7%) - 

No smartphone 290 (17%) - 

Has smartphone 1,376 (81%) - 

Disability   

None 993 (59%) - 

Intellectual 61 (3.6%) - 

Physical 537 (32%) - 

Visual 99 (5.8%) - 

Physical and Visual 4 (0.2%) - 
1n (%)  
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4.4.2 Effects of adding automation and an attendant 

Table 4-5 presents the estimated coefficients from the multiple models we 

estimated. Standard errors are clustered at the individual level to account for the pseudo-

panel data structure. Using the coefficients from the mixed logit model, we compute the 

willingness to pay (WTP) for automating modes and adding a vehicle attendant for the 

bus, ride-hailing, and shared ride-hailing modes. Using non-automated rail as the 

baseline, Figure 4-2 displays individuals’ WTP for the three other modes, all else equal 

(e.g., same travel time). A negative WTP can be interpreted as requiring a discount 

relative to a rail trip for an individual to be ambivalent between choosing a specific mode 

over rail. Since it does not make sense to consider a zero minute trip, we plot mode 

preferences for a short trip and a long trip. The longer trip length does slightly increase 

the WTP values for the bus, ride-hailing, and shared ride-hailing modes, but it does not 

change the overall trends in how automation and the presence of an attendant impact 

mode preferences. 

In the status quo (not automated) cases, individuals have negative WTPs for the 

bus, ride-hailing, and shared ride-hailing modes, with the exception of a slightly positive 

WTP for the ride-hailing mode for a long trip. Adding automation does not significantly 

change WTP for the three modes for either trip length. The addition of an attendant to the 

automated modes, however, does result in a significant shift to positive WTPs for 

automated buses, automated ride-hailing services, and automated shared ride-hailing 

services. In the discussion section, we hypothesize about the interpretation of this result.  
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4.4.3 Subgroup Analyses 

We perform subgroup analyses to investigate potential preference differences 

based on income, race, and gender. The survey sample included 33 individuals who self-

identified their gender identity as transgender male, transgender female, gender queer, or 

gender non-conforming. We grouped all of these individuals with respondents who 

identified as female, given the higher rates of violence and discrimination that 

transgender and gender non-conforming individuals face (Grant et al., 2011). We 

hypothesized that such experiences might affect their attitudes towards safety, especially 

in terms of sharing rides. Alternative groupings did not change the reported results in 

aggregate.  

To perform the subgroup analyses, we directly estimated mixed logit WTP 

models for different subgroups. Since WTP-space estimation is independent of scale, we 

can directly compare the results from models for different groups, as opposed to 

estimating a single model with dummy parameter interactions. Prior studies have 

demonstrated that income, race, and gender impact attitudes towards conventional 

transportation modes and AVs (Gkartzonikas & Gkritza, 2019; Moody et al., 2020; Nair 

& Bhat, 2021). No consistent differences emerged in our results regarding racial 

differences, though we are limited by our sample which was mostly white. Higher 

income individuals expressed a higher WTP for automation and an attendant, perhaps due 

to their overall lower price sensitivity. A gender-based subgroup analysis revealed that 

although women and men shared similar baseline preferences for non-automated modes, 

men expressed significantly higher WTPs for automated modes and automated modes 

that also include an attendant for a long trip (Figure 4-3). For a short trip, gender 
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differences only emerged when the automated modes also included an attendant. 

 Even with the addition of the attendant to the automated modes, women only 

demonstrated a positive WTP for the automated ride-hailing mode for a long trip. The 

gender subgroup analysis revealed that the positive WTPs from the whole-group analysis 

stemmed primarily from the men in our sample. 
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Table 4-0-5: Discrete choice model coefficients in WTP space. 

Attribute Coef.  MXL Male Female Mid/High Income Low Income 

Lambda   0.094 (0.006)   *** 0.074 (0.008)   *** 0.130 (0.011)  *** 0.083 (0.007)  *** 0.152 (0.018)  *** 

Travel time 𝜷𝟏  -0.573 (0.049)  *** -0.684 (0.086)  *** -0.460 (0.053) *** -0.647 (0.065) *** -0.353 (0.060) *** 

Bus travel time 𝜷𝟐  0.062 (0.049)       ; 0.133 (0.083)       ; -0.007 (0.056)     ; 0.086 (0.063)     ; 0.002 (0.067)     ; 

RH travel time 𝜷𝟑  0.232 (0.053)   *** 0.366 (0.090)   *** 0.095 (0.061)     ; 0.267 (0.067)   *** 0.096 (0.082)     ; 

Shared RH travel 

time 
𝜷𝟒  0.203 (0.050)   *** 0.426 (0.087)   *** -0.014 (0.057)     ; 0.289 (0.064)    *** -0.055 (0.069)     ; 

Bus 𝜷𝟓 𝝁 -6.665 (1.454)  *** -9.267 (2.463)  *** -3.870 (1.605)   * -8.845 (1.898)   *** -1.526 (1.905)     ; 

(base = Rail)  𝝈 -10.632 (0.835) *** -13.032 (1.521)*** -8.094 (0.858) *** -12.299 (1.155)  *** -6.213 (0.926) *** 

Bus - Automated 𝜷𝟔  1.220 (0.725)    . 5.489 (1.257)   *** -2.628 (0.907)    ** 2.739 (0.930)       ** -2.118 (1.042)     * 

Bus – Attendant 

present 
𝜷𝟕  9.822 (1.078)    *** 14.478 (2.067) *** 5.072 (1.035)   *** 11.615 (1.453) *** 4.595 (1.176)  *** 

Ride-hailing 

(RH) 
𝜷𝟖 

𝝁 -7.193 (1.573)   *** 
-11.883 (2.762)*** -2.504 (1.716)     ; -8.106 (1.972)    *** -4.082 (2.406)    . 

(base = Rail)  𝝈 13.168 (0.886)  *** -14.424 (1.554)*** 11.830 (0.972) *** -14.042 (1.158)  *** 10.506 (1.180) *** 

RH - Automated 𝜷𝟗  0.731 (0.802)     ; 4.772 (1.360)   *** -2.855 (0.992)   ** 1.573 (0.992)     ; -1.775 (1.267)     ; 

RH - Attendant 

present 
𝛽10  10.931 (1.106)  *** 16.180 (2.150)  

*** 

5.412 (1.064)  *** 12.456 (1.449) *** 6.590 (1.474)   *** 

Standard errors of estimates are presented in parentheses. Coefficient units are in USD $. * ≤0.05. ** ≤0.01. *** ≤0.0001. 
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Standard errors of estimates are presented in parentheses. Coefficient units are in USD $. * ≤0.05. ** ≤0.01. *** ≤0.0001. 

 

Table 4- 0-6 (cont.): Discrete choice model coefficients in WTP space. 

Attribute Coef. 
 

MXL Male Female Mid/High Income Low Income 

Shared RH 𝛽11 𝜇 -11.535 (1.584) *** -18.273 (2.957) *** -4.819 (1.624)  **       -14.461 (2.102) *** -2.732 (1.981)     ; 

(base = Rail)  𝜎 -12.503 (0.913) *** 13.472 (1.513)  *** -11.212 (1.036) *** 13.479 (1.179) *** -9.824 (1.258) *** 

Shared RH - 

Automated 
𝛽12  2.903 (0.815)    *** 8.047 (1.539)    *** -1.748 (0.974)    . 4.338 (1.034)   *** -1.113 (1.305)     ; 

Shared RH, 

Attendant 

present 

𝛽13  8.560 (1.011)   *** 10.902 (1.720)  *** 6.195 (1.162)  *** 9.385 (1.276)    *** 6.253 (1.533)  *** 

Log-Likelihood: -16,798.2 -9,742.6 -6,780.3 -13,781.7 -2,942.9 

Null Log-Likelihood: -18,787.1 -10,968.4 -7,818.7 -15,382.3 -3,404.7 

AIC: 33,630.3 19,519.3 13,594.6 27,597.4 5,919.9 

BIC: 33,758.1 19,637.9 13,707.4 27,721.7 6,018.6 

McFadden R2: 0.1 0.1 0.1 0.1 0.1 

Adj McFadden R2: 0.1 0.1 0.1 0.1 0.1 

Number of Observations: 13,552.0 7,912.0 5,640.0 11,096.0 2,456.0 

Number of Respondents: 1,694.0 989.0 705.0 1,387.0 307.0 
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Figure 04-2: Average willingness-to-pay (WTP) values with 95% confidence interval bounds for 
the bus, ride-hailing, and shared ride-hailing modes relative to non-automated rail. 

Results shown for a short trip and a long trip. 
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Figure 04-3: Gender differences in average willingness-to-pay (WTP) values 
Shown with 95% confidence interval bounds for a short trip and a long trip. 
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4.4.4 Scenario analyses 

The WTP estimates provide insights into preferences for the different modes, all 

else equal. In reality, any one trip is a combination of mode, price, and travel time. To 

understand respondent preferences for the joint combination of these attributes, we used 

the estimated mixed logit choice model to simulate how AVs might compete with transit. 

We explored six scenarios of characteristic trips across Washington, DC (Table 4-6). We 

used our “Low-Income Model” to conduct the scenario analysis for Scenario 5 (Trip from 

lower income area), recognizing that individuals making those types of trips may be 

members of lower-earning households. Considering the status quo times and prices as the 

baseline, we modeled how demand for each mode (evaluated in terms of predicted market 

share) might change in response to automating ride-hailing and shared ride-hailing 

services. Given that automation is expected to decrease prices, we also added in a 30% 

price decrease for the automated ride-hailing and shared-ride hailing modes.  

We limited the price decrease to 30% based on the current operating budgets for 

Uber and Lyft, which dedicate only 20% of their annual operating expenses to paying for 

drivers (Lyft, 2020; Uber, 2020). These scenario analyses should not be interpreted as 

forecasts but rather as illustrative examples of the substitution patterns that our estimated 

choice model predicts for the limited respondent pool from our survey. The exercise 

reflects respondent preferences for the joint set of attributes associated with real trips 

individuals might take, as opposed to the all else equal context of WTP coefficients 

(Haboucha et al., 2017; Helveston et al., 2015). Real-world forecasts would need to 

consider preferences of a much broader population and (ideally) include revealed 

preference data when they become available.  
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The six scenarios we developed capture various trips individuals might take, 

including those who might travel to the city from the outer-lying regions via one mode 

(e.g., personal vehicle or train) and then travel within the city using additional modes. We 

based the travel times and prices for the scenarios on estimated values from Google 

Maps, Lyft’s and Uber’s price estimators, the CityMapper travel planning app, and the 

Washington Metropolitan Area Transit Authority (WMATA) online price estimator 

(Citymapper, 2022; GoogleMaps, 2022; Lyft, 2022a; Uber, 2022a; WMATA, 2022). We 

selected scenarios that matched the median trip length (distance) for non-commute trips 

within the Washington, DC Metropolitan Region (Joh, 2020), as well as edge case 

scenarios in which we expected certain modes to be considered generally preferable. The 

scenario names indicate their archetypal trip type. For example, “Pro-Metro” indicates a 

trip in which the rail system has a direct route between the trip start and end points. 

Figure 4-4 illustrates the results of the scenario analyses. Status quo indicates current 

Table 4-0-7: List of scenarios used in scenario analysis and associated attribute values.    
Bus Rail Ride-hailing Shared  

Ride-hailing 

Scenario Trip 

Type 

Distance 

(mi) 

Price Time 

(min) 

Price Time 

(min) 

Price Time 

(min) 

Price Time 

(min) 

1 Long 

trip 

10.8 $2.00 80 $4.15 31 $35 25 $28 30 

2 Pro-rail 3.8 $2.00 27 $2.00 15 $13 15 $10 20 

3 Rail 

with 

transfer 

3.8 $2.00 40 $2.25 28 $15 25 $12 30 

4 Pro-bus 1.3 $2.00 17 $3.00 45 (bus 

to rail 

transfer) 

$13 15 $10 20 

5 Trip 

from 

lower 

income 

area 

4 $2.00 40 $2.29 18 $11 10 $9 15 

6 Bad 

transit 

options 

5 $2.00 44 $3.00 46 (bus 

to rail 

transfer) 

$17 15 $14 20 
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travel times and prices. Moving across the x-axis, we introduce automation, a discount, 

and having an attendant present for the ride-hailing and shared ride-hailing modes.
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Figure 04-4:  Mean estimated values for predicted market share based on introducing automation, an attendant, and price discounts for 
six trip scenarios. 

As one moves left to right across the x-axis, additional features are added to the ride-hailing and shared ride-hailing modes. “Status 
Quo” indicates that none of the modes are automated or have an attendant, and that the modes’ prices reflect current prices. A version 
with 95% confidence interval error bars is available in Appendix C.3. 
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The following observations emerge from the scenario analyses: 

1. Competition between transit modes and automated ride-hailing services (shared or 

not) stems more from price discounts than an inherent interest in automation. 

2. For trips where rail dominates preferences in the status quo, it remains 

competitive even against discounted ride-hailing services that are automated, 

though is less competitive once an attendant is added to the automated modes. 

3. Shared ride-hailing services, though less popular in the status quo, become more 

attractive with additional features and discounts.  

4. For trips where people were already likely to use ride-hailing services, that 

likelihood increases with the addition of automation, an attendant, and a price 

discount. This supports the idea that automated ride-hailing could help to fill 

existing transportation gaps. 

We are not able to directly compare the status quo results of the scenario analyses 

with actual market shares since we do not have data on real market shares for these 

specific types of trips. We are, however, able to compare the status quo results to data on 

aggregate usage of these different mode types using data from the NCR Regional Travel 

Survey (also used as our reference demographic sample), which collected information 

regarding mode usage for trips within the entire region and within areas that are 

categorized as Equity Emphasis Areas (Appendix C.4). Equity Emphasis Areas are 

defined as having higher concentrations of low-income individuals and/or traditionally 

disadvantaged racial and ethnic population groups. The “Trip from Lower Income Area” 

falls into one of these Equity Emphasis Areas. We find that the ordering of preferences in 

the status quo results of our scenarios generally matches that of mode use for non-
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commute trips in the region, with rail as typically most preferable. Bus and rail have 

more similar mode use within the EEAs in the region than our “Trip from Lower Income 

Area” scenario estimates. This difference could result from the specific trip that we 

selected for that scenario which, based on the trip characteristics, favors rail. While we 

acknowledge these differences, we emphasize that the focus of our study was on trying to 

understand the potential impact of automation on overall public transit use and feel that 

these minor differences do not detract from our overall study findings. 

 

4.5 Discussion 

The results of the study indicate that fears of a mass transition away from transit 

to AVs may be limited by people’s willingness to use AVs, at least in the short term. 

Respondents to our survey on average were only willing to pay a premium for automated 

modes when a vehicle attendant was also present, limiting the potential cost savings that 

AV operators might achieve by removing the driver. Nonetheless, attendant presence 

may be a critical feature for early AV adoption. Even without a discount, respondents 

demonstrated a positive willingness-to-pay for automated modes with an attendant 

onboard.  

In many respects, an AV with an attendant onboard is fairly equivalent to current 

non-automated ride-hailing modes with a human driver. It is then perhaps 

counterintuitive that individuals would pay more for this feature. One potential 

explanation is that respondents may perceive computer-driven vehicles as safer or more 

reliable than those operated by human drivers. Indeed, some prior public engagement 

research has found evidence of this type of reasoning. Stopher et al. (2021) conducted 
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focus groups with participants of a recent AV pilot program between the AV ride-hailing 

company Waymo and the Valley Metro Regional Public Transportation Authority in 

Phoenix, AZ. Some focus group discussants expressed that they felt more comfortable 

with a computer driver than a traditional ride-hailing driver. Indeed, Waymo appears to 

be leveraging this perceived benefit with promotional advertisements asserting that, “You 

want a Driver you can trust” (Waymo, 2022). Yet people may not be fully comfortable 

ceding total control to automated systems, hence the desire for an attendant. Though our 

survey specified that the attendant’s role was not to operate the vehicle, survey 

respondents may still have considered the attendant as a safety backup in case of 

emergency. Future qualitative studies could further explore perceptions of AV attendants 

and the multiple roles they might be expected to fill. Some studies have already started to 

explore public attitudes towards different types of attendants, finding preferences for 

onboard attendants versus remote monitoring (Abe et al., 2020). In the meantime, some 

AV companies are already choosing—or may be required by state regulations—to launch 

their services with a safety driver onboard (Schrock, 2021).  

 The presence of an AV attendant appears especially critical for women. Women 

only became ambivalent towards automated buses and automated shared ride-hailing 

services when the modes included an AV attendant. These results perhaps indicate that 

the presence of an attendant is an essential feature for women to consider using either of 

these modes, even at costs equivalent to rail.  

Overall, competition with public transportation may remain limited by the types 

of individuals who currently express the greatest willingness-to-pay for AVs: men and 

higher income individuals. These two groups make up a smaller share of current public 
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transportation users in the United States (Clark et al., 2017), thus ridership losses among 

those two demographic groups would yield smaller impacts on overall ridership numbers. 

Nevertheless, the authors recognize that siphoning even small portions of riders away 

from public transportation modes could still negatively impact the system. 

 Although the Washington, DC Metropolitan Region has featured some AV pilots 

and testing (Argo AI, 2021; Kurzius, 2016), we expect that the majority of survey 

respondents had minimal (if any) experience with an automated vehicle. Approximately 

62% of our sample reported having prior experience with ride-hailing services. 

Individuals’ attitudes towards AVs might change as automated transportation modes 

become more widespread and they gain either exposure to or experience with using 

automated modes, as has been found with other emerging transportation technologies. 

For instance, riding in an electric vehicle (EV) for just three to five minutes was found to 

significantly improve individuals’ attitudes towards plug-in EVs (Roberson & Helveston, 

2020). This study provides a valuable data point of preferences as they currently stand—a 

snapshot of the market that both AV developers and transportation planners must face as 

they plan for an automated future. 

In the six aforementioned simulation scenarios, this study focused primarily on 

competition of automated ride-hailing services with transit. These scenarios did not, 

however, consider the potential benefits from automating buses. Given that buses are 

already typically the least expensive transportation option (at least in terms of user costs), 

automating buses is not expected to further decrease costs to consumers. Instead, 

proposed benefits include decreasing operating costs which could allow for increased 

service frequency and geographic coverage, or smaller AV shuttles could help fill gaps in 
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the existing system (Cohn et al., 2019; Whitmore et al., 2022). To avoid excessive 

cognitive burden of the choice-based conjoint questions, our survey design did not 

include frequency, wait time, or reliability as choice attributes. Thus, the final model did 

not include sufficient information to explore scenarios in which buses benefit from 

automation. Future studies could further explore public interest in potential enhancement 

of public transportation with automated modes, in addition to competition.  

Finally, it is important to recognize some of the limitations of our findings. First, 

we framed our experiment around taking an evening leisure trip since non-commuting 

trips account for the majority of trips in the DC area. Results may differ for AV 

commuting scenarios, though we cannot conclude whether WTPs would be higher or 

lower for commute trips since the relative value of each trip attribute may differ in these 

scenarios. We also selected a particular set of attributes which allowed us to focus on the 

potential impacts of automation and an attendant, but neglected other trip attributes such 

as wait time which may influence individuals’ choice preferences. Our sample included a 

large portion of higher-income and well-educated individuals who may not be as 

representative of general public transit users. Nonetheless, the sample was fairly 

representative of the study region, where costs of living are also higher than many other 

U.S. cities. While residents in the study region may have higher incomes, it does not 

necessarily mean that they are any more or less price sensitive to travel costs than in other 

locations. Thus, while the study results may not generalize to all cities, they may reflect 

preferences in other large cities that have similarly high costs of living, higher-earning 

households (on average), and multiple transit modes including buses and rail systems. 

Moreover, we attempted to highlight preferences of lower-income individuals by 
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specifically using our low income model as part of our scenario analysis. Finally, the 

emergent nature of AVs means that we are unable to compare our results to actual market 

data, though “status quo” outputs of our scenario analyses generally reflect the relative 

usage of current rail, bus, and ride-hailing services. 

 

4.6 Conclusions 

With the continued development and gradual deployment of automated vehicles, 

AV companies, mobility providers, and transportation planners will all need to 

understand how quickly and willing the public is to adopt AVs. In particular, potential 

competition between AVs and public transit systems could further detract from transit 

usage, yielding negative environmental and equity impacts. System-level impacts will 

largely depend upon public uptake of automated transportation modes.  

In this study, we investigated the previously unexplored question of the extent to 

which automated ride-hailing services might compete with public transit modes in the 

United States. Using data from an online choice-based conjoint survey fielded in the 

Washington, DC Metropolitan Region, we estimated discrete choice models and used 

them to simulate choice probabilities for a variety of trips. We find that public interest in 

automated ride-hailing services stems primarily from the potential to achieve lower prices 

rather than an inherent interest in automation. Given the current business models for ride-

hailing companies, potential competition of automated ride-hailing and shared ride-

hailing services with transit modes will likely be limited, since driver costs only account 

for approximately 20% of ride-hailing companies’ current operating budgets (Lyft, 2020; 

Uber, 2020). Furthermore, for trips where desirable transit modes are available (i.e., low 
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cost and relatively low travel time), transit modes remain competitive even against 

discounted and automated ride-hailing modes. Thus, investment in improving transit 

options could also stem future competition with AVs. 

Our results also suggest that a vehicle attendant is critically important for 

increasing AV use. Individuals primarily expressed a positive willingness-to-pay for 

automated modes only when an attendant was also present. Gender differences also play 

a role, with men expressing a greater average WTP for automated modes than women. 

On average, women only expressed a positive WTP for automated ride-hailing services 

when an attendant was also onboard.  

 Gaining a greater understanding of public preferences for automated and non-

automated modes enables transportation planners to begin designing future transportation 

systems that account for shifting preferences while still providing critical public transit 

services. Automated mobility providers can also use this information when making 

important design and service decisions, such as whether to include an onboard attendant 

and setting prices. At present, keeping attendants onboard appears critical for both men 

and women, though these preferences could change as AV deployment expands and users 

gain more experience with these systems.   
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Chapter 5: Policy Implications and Recommendations 

 

 

This chapter examines the policy implications of the presented research, 

contributing to ongoing conversations about AI and the Future of Work and the 

deployment of autonomous vehicle services. This chapter also discusses the potential 

impacts of robotaxis on Transportation Network Companies. 

 

5.1 AI and the Future of Work 
 

Though excitement abounds for emerging AI technologies and their allegedly 

unlimited potential, these technologies will not be suitable for every use case nor every 

work system. Even though AI-enabled technologies can now perform a wider range of 

tasks than prior forms of automation13, Study 1 demonstrated that tasks are not the same 

as jobs, especially when evaluated as part of a full work system (e.g., a driver does more 

than drive). An AI technology capable of performing a task within a controlled 

environment may not be suitable for completion of that same task within an actual work 

system or may necessitate expansions of, or changes to, the work system. Firms should 

carefully assess whether implementation of an AI technology is suitable for their work 

system, and proactively consider what larger work-system changes they may need to 

implement as a result of AI introduction.  

 

                                                           
13 While not examined in this dissertation, how AI technologies are able to perform these more complex 

tasks (i.e., their development processes) also raises important questions regarding the legal rights to the 

training data AI firms use, the treatment of workers involved in AI training and retraining processes, and 

the environmental impacts of AI technologies’ resource use. See Crawford and Joler’s (2018) artwork 

“Anatomy of an AI System: The Amazon Echo As An Anatomical Map of Human Labor, Data and 

Planetary Resources” for a powerful visual depiction of some of these additional factors. 
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A limiting factor for AI’s expansion into different work systems will be the cost 

of labor to perform the remaining tasks that the AI technology cannot complete, as well 

as the costs of newly-introduced work tasks that may emerge. These costs are often 

underestimated and will influence where AI technologies make sense to implement. This 

dissertation research revealed that driverless robotaxi services still require human labor 

for multiple roles (Study 1) and that these roles add non-negligible costs (Study 2). 

Though higher than prior estimates, these labor costs are not currently precluding 

robotaxi deployment. Contrastingly, Amazon recently shifted away from its cashier-less 

grocery stores equipped with “Just Walk Out” technologies due to the high cost of 

validating customers’ purchases using offshored labor in India (Maruf, 2024).  

Another force counteracting a jobless future is that AI, like past technological 

revolutions, will create new jobs, some of which domain-specific decision-makers could 

predict using the patterns discussed in Study 1, and others which will be difficult to 

foresee. The quality of these jobs depends on intentional planning decisions. Positive 

worker and AI technology performance outcomes need not be viewed as goals in tension 

with one another; rather, workers and intentionally-designed work systems can and 

should play an essential role in supporting the trustworthy AI systems we all desire. 

Emerging frontline robotaxi roles, for instance, are critical for supporting the safe 

deployment of robotaxi services on public roads and are currently being designed in a 

way that promotes worker agency (further discussed below). Human labor will remain a 

critical element of designing, verifying, and validating that AI technologies are part of 

trustworthy systems (i.e., are valid, reliable, safe, fair, bias is managed, secure, resilient, 

accountable, transparent, explainable, interpretable, and privacy-enhanced (NIST, 2023)). 
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5.2 Impacts of Robotaxis on TNCs 
 

This dissertation primarily drew on taxi services as a point of comparison for 

emerging robotaxi services since the structure of current robotaxi firms more closely 

resembles that of a centralized taxi firm than a decentralized (with regard to frontline 

workers) Transportation Network Company (TNC, e.g., Uber). Nevertheless, the 

expansion of robotaxi services will likely impact TNCs and the gig workers that engage 

on their platforms, as they offer comparable services.  

If robotaxi firms become direct competitors with TNCs, TNCs may have to lower 

their fares in order to compete, though doing so could threaten the economic viability of 

TNCs that are still struggling to achieve consistent profitability (Saul, 2024). To offset 

lower fares, TNCs could increase fees on drivers—decreasing drivers’ net pay—

potentially reintroducing challenges with attracting and maintaining drivers on their 

platforms (Gregg, 2024) and exacerbating ongoing legal battles with localities over 

platform driver minimum wages (Rothenberg, 2024). As companies with a global 

presence, TNCs could also focus their operations on areas in which robotaxi deployment 

is less likely to occur (i.e., areas with lower utilization, per Study 2’s findings), as well as 

their other types of service offerings (e.g., e-scooters, e-bikes, rental cars). 

Alternatively, TNCs could incorporate robotaxi vehicles onto their platforms, an 

approach Uber is pursuing via its partnerships with Waymo and other AV technology 

developers (Uber, 2024). Such partnerships could impact the cost structures and business 

models for both AV firms and TNCs. Negro et al. (2021) note that TNCs annually spend 

millions of dollars on driver incentives and referrals. This spending could shift towards 

incentivizing AV firms to post their vehicles onto the TNCs’ platforms to meet rider 
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demand. Study 2 found that robotaxi operating costs are lower than those of taxi services. 

Assuming human TNC drivers’ internalized costs are more similar to taxis than 

robotaxis, human drivers would need higher incentives to drive to offset their higher 

operating costs. By switching from incentives for human drivers to incentives for AV 

firms, TNCs could decrease their overall spending on incentives. Yet the opposite may 

also be possible. Robotaxi firms may require higher incentives to ensure their 

profitability or may demand contracts that guarantee a certain level of utilization of their 

vehicles.  

The aforementioned contract structures assume that AV firms would continue 

filling both the technology developer and fleet operator roles, yet the long-term business 

models for these firms remains undetermined. In a 2022 SEC filing, the AV trucking 

company Aurora explicitly stated that the company ultimately plans to transition to a 

supplier of AV technology, not an owner or operator of large vehicle fleets (Aurora 

Innovation, Inc., 2023). If AV firms transition away from serving as fleet operators, 

TNCs or different entities would need to fill that function. One interviewed AV 

Operations Expert described how traditional vehicle fleet operators could fill this role:  

Who could serve as [the] fleet operator? Well, there's a lot of companies. I mean, 

there are companies that already serve as fleet operators, right? You've got 

trucking companies out there, is one obvious example, they serve as fleet 

operators, in many cases. Rental car companies serve as fleet operators, they rent 

cars out. Could they conceivably do [it]? Maybe, I'm not sure. But there are sort 

of other models, there are other companies out there who are not in the AV space 

who may actually longer-term be interested in being fleet operators for a fleet of 

autonomous vehicles because they can take advantage of sort of efficiencies they 

have in their business already to handle something that looks like it, whether it's 

renting cars to humans, or driving trucks or operating shuttles or what have you in 

terms of the fleet operator ecosystem (Interview with AV Operations Expert, 

February 24, 2023). 

 

Study 1 revealed that the introduction of AVs introduces additional tasks and roles that 
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support both the vehicles and the passengers. Whatever firm ultimately takes on the fleet 

operator role—if not performed by the AV developer—would need to reorient its work 

system to accommodate these new tasks and roles. This transition would require careful 

planning, as separating the technology developers from the operational workforce could 

compromise how well certain roles able to manage incidents that occur with the vehicles, 

for either remote or direct forms of support. One interviewed Frontline Worker 

acknowledged the potential for such a transition, but highlighted some of the drawbacks 

with disaggregating company roles:  

For my own personal opinion, I think that it's doable. I think heavily skilled 

training is really involved in it as well…really having like, for lack of a better 

term, like your ducks in a row when you're training these new companies to take 

over the technology. I personally think it works a lot better when you're all 

together...But it's also definitely doable if you package it all together and, you 

know, describe to them what kind of roles and positions you would need…I think 

[AV company] has done such a good job of defining all of that, that it's hard for 

me to see it all separated (Interview with Frontline Worker, August 9, 2023). 

 

Traditional fleet operators looking to transition to management of AV fleets should not 

undervalue the organizational learnings robotaxi firms have accrued and the embedded 

knowledge of their workforces. Transitioning to an AV fleet will require not only 

investment in the new technologies, but also investment in upskilling and retraining their 

workforce.    

How might these evolving business models impact current TNC drivers? Uber’s 

webpage on autonomous futures asserts that they “…imagine a future where autonomous 

vehicles and human drivers seamlessly work together to make transportation more 

reliable, affordable, sustainable, and safer. Our vision is one of a shared, electric, and 

multimodal future, with AVs operating alongside drivers and couriers, each bringing their 

unique capabilities to the table” (Uber, 2024). Though robotaxi vehicles might not 
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completely displace human drivers on TNC platforms, their availability as an alternative 

mode choice could cut into the number of trips available for human drivers. This 

increased competition for rides could put downward pressure on earning for human 

drivers.  

Remaining trips available for human drivers could include those perceived as less 

desirable or those that require more in-person support. Robotaxi firms may not send their 

vehicles into areas that are geographically difficult to navigate or those in which they fear 

damage to their vehicles14. Human drivers undoubtedly have their own personal safety 

concerns—and biases—that influence what trips they accept, but may be more flexible in 

terms of the geographic regions in which they operate. 

Available trips could also include those that require more in-person support. TNC 

drivers could compete with taxi services to offer specialized types of transportation 

services like non-emergency medical transport (e.g., Uber Health or Lyft Healthcare). 

Gig workers could also focus on food and goods delivery services. Some AV firms like 

Nuro are working on purpose-built goods delivery vehicles and are partnering with large 

companies like Walmart and FedEx to perform goods delivery (Nuro, 2024). 

Nonetheless, AV services may be less suitable for engaging with different types of goods 

providers. Consider, for instance, the diverse types of storefronts and restaurant 

operations that a typical UberEats driver may navigate on any given day. Developing 

technologies to accommodate every environment and situation may be more costly than 

continuing to fill these trips with human drivers. As Study 1 noted, the non-automatable 

tasks and hidden subtasks that these drivers are performing will influence whether or not 

                                                           
14 In some regions, robotaxi firms have faced problems with vandalism to their vehicles, including vehicles 

that have had their windows smashed and been set on fire (Davis, 2024). 
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their role can be eliminated within a given work system. 

Visions of a shared future in which human drivers and AVs can collaborate to 

meet demand for passenger and goods delivery services are indeed ideal. Achieving such 

futures will require proactively engaging with TNC drivers to make sure their voices 

receive equal weight as AV developers when designing that future. 

 

5.3 Recommendations for an AV Future 
 

The following recommendations are based on both the research findings presented 

in this dissertation, as well as the author’s broader engagement with the autonomous 

vehicle research and policy communities.   

1. Invest in and improve transit services, and foster rich transportation 

ecosystems. 

During this period of still-limited AV deployment and uncertainty regarding the 

future of the AV industry, transportation planners should continue pursuing other 

approaches for solving current transportation problems. Study 3 finds that based on 

current public preferences, AV ride-hailing services may only compete with trips for 

which poor transit options exist. Continuing to invest in and improve transit services may 

stave off future competition from AVs or, viewed more optimistically, direct AV services 

to fill in transit service gaps and improve overall transportation access.  

Cities should also continue exploring other forms of transportation services that 

might reduce dependency on individually-owned vehicles, including micromobility 

programs (e.g., bikeshare, e-scooters) and microtransit services. The results from Study 

2’s AV Advanced Technology scenario suggest that even with cost-reducing technology 
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advancements, robotaxi services are unlikely to achieve lower costs than personal vehicle 

ownership. Nonetheless, fostering a rich transportation ecosystem could help address 

issues of environmental sustainability and traffic congestion in the short-term and could 

lay the groundwork for allowing shared AV services to integrate into, and further 

enhance, rich transportation ecosystems. Arlington, Texas, already uses an on-demand 

rideshare service as its primary public transportation offering and has been integrating 

AVs into this service for the past few years (Khan et al., 2022). Their approach could be 

used as a model for phased introduction of AVs, especially for cities that similarly lack 

traditional transit services. 

2. Identify where AV deployment and job losses are (and are not) likely to 

occur. 

Autonomous vehicles are unlikely to replace all driver jobs in the near or long 

term. In the short term, AV firms will likely continue to deploy their services in locations 

that offer simpler operating conditions and will continue to scale on a city-by-city or even 

a route-by-route basis, limiting AVs’ impact on the transportation workforce. As one 

interviewed AV Regulation Expert described: 

I just see this as a very multistage deployment. Thereby the impacts are going to 

be multistage. And even if it was all to happen right now, I still think the 

economics would not justify broad-scale…coast-to-coast deployment, at least in 

the short term (Interview with AV Regulation Expert, November 08, 2022). 

 

As noted by the interviewee and highlighted in Study 2’s findings, the competitiveness of 

certain AV services like robotaxis is highly sensitive to utilization. AV firms will likely 

limit their services to domains in which they can achieve sufficient utilization to offset 

their higher technology costs.  

Moreover, AVs may never be suitable for all types of transportation services. In 



141 
 

certain trucking sectors, firms may want (or be required) to keep drivers onboard to help 

prevent freight theft or to handle regulated materials (Gittleman & Monaco, 2020). Study 

3’s findings also suggest that some passenger transportation riders may still require, or at 

least prefer, in-person support. On average, individuals were only willing to pay a 

premium for autonomous modes that had an attendant present.  

Though robotaxi firms have, as Study 1 reveals, redistributed many of the taxi 

driver’s tasks to remote roles, this redistribution may not be sufficient for all situations. 

As another interviewed AV/Taxi Regulation Expert explained:  

…there's a certain element of customer service that has evolved. And I think there 

may be some people who always, even in [highly] automated vehicles, keep 

someone in the vehicle…[For] non-emergency medical transport, I think drivers 

or assistants will have their jobs reclassified and there will be people that ride 

along, get paid by insurance, [help] people get to and from dialysis. In the 

limousine industry, there's no way that there's going to be no driver that's going to 

meet somebody in luggage if they're an entertainer. Even if it's an automated limo, 

there's still going to be a chauffeur who's going to serve as a concierge (Interview 

with AV/Taxi Regulation Expert, February 15, 2023). 

 

Though robotaxi firms are using a combination of technology and human labor to provide 

many forms of passenger support, in-vehicle support may always be necessary for certain 

types of transportation services. These situations still call for either human-driven 

services or, as the interviewee suggested, AV services with an onboard attendant. 

AV firms could partner with human-driven services to handle such situations. 

These partnerships could be part of a “three-tier” transportation ecosystem in which AV 

technology suppliers, Transportation Network Companies (e.g., Uber, Lyft), and human 

independent contractor drivers all coexist in the marketplace (Freund et al., 2022). As 

Uber policy lead Miriam Chaum once described, AVs could be introduced to fill trips 

“where and when [they’re] best suited” (Chaum, 2023). Ideally, this “three-tier” model 
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would support the richening of the transportation ecosystem, but regulators may need to 

play a role in ensuring that the different competing services do not spur a race to the 

bottom that harms both human workers and riders15. Ultimately, restricted AV operational 

domains and demand for forms of in-person support will limit AV job displacement.  

3. Investigate the root causes of existing transportation labor shortages and 

lack of workforce diversity, and implement strategies to address them. 

Given that driving jobs will likely persist in both the short and long term, 

transportation companies, government agencies, and researchers should continue to 

investigate the root causes of existing labor shortages and lack of diversity in the 

transportation workforce, and implement identified strategies to address them (see 

Agrawal et al. (2024) and APTA (2023) for proposed strategies focused on the public 

transit domain).  

AV firms may be able to leverage perception of their companies as exciting AI 

technology developers to attract workers and may face fewer shortages as a result. One 

interviewed Senior Manager at a robotaxi firm attributed the relative ease with which he 

could recruit workers to this novelty factor: “I think part of the reason is the job, like 

straight up, the job is so cool that people are like, ‘Man, this is awesome. I want to be a 

part of this’” (Interview with Senior Manager, August 10, 2023). This novelty factor may 

help attract workers to the AV industry, but absent competitive wages and benefits, AV 

firms may face similar issues with worker retention and labor shortages as are present in 

other transportation sectors.  

                                                           
15 The International Association of Transportation Regulators’ “Best Practices, Guiding Principles and 

Model Regulations for ‘Robotaxis’” offers some guidance for how regulators might best implement AV 

regulation in the passenger transportation sectors (IATR, 2022). 
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Decision-makers should engage directly with workers and should be open to 

alternative perspectives on what constitutes a “good job,” and how that definition might 

differ by amongst various populations. One interviewed Operator believed working for a 

robotaxi firm was better than driving for a TNC. As the worker explained: 

I would say, without a doubt, it's better to work at [Robotaxi Firm]. Because as 

[an] Uber driver, you're essentially taking on all the risks…you're an independent 

contractor. At [Robotaxi Firm], you're already a good driver. So you enjoy 

driving, I would assume, if you're doing it. You're doing essentially the same 

thing but you're learning a new technology. [You] have the chance to grow within 

a company, hopefully. And you get great benefits (Interview with Operator, 

September 30, 2022). 

 

Though this worker appeared to value the stability and benefits of full-time employment 

with a robotaxi firm, not all workers may share the same perspective. As Matthew Daus, 

former Commissioner/Chair/CEO of the New York City Taxi and Limousine, explained: 

 …drivers don't want to work as employees. A lot, most of them do not, in my 

experience. They don't want to be told what time to go to work. They don't want 

to wear a uniform, but they want benefits that employees get (Personal 

Correspondence, 2024).  

 

Though perhaps offering better stability and benefits, full-time robotaxi firm roles may 

not offer the flexibility and independence that current taxi and TNC drivers desire. Taxi 

and TNC workers that either cannot or lack the desire to pivot into AV industry roles will 

require alternative career paths. 

   

4. Proactively identify alternative career paths for displaced workers and 

bolster the quality of jobs that remain. 

Study 2’s results suggest that if jobs shift from traditional taxi to robotaxi 

services, the total number of frontline jobs could decrease by between 57% to 76%. 

Researchers should proactively investigate alternative career paths for displaced workers 
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within the taxi industry and other potentially-affected sectors. Some workers could 

transition into the robotaxi industry since many of the frontline roles do not require 

advanced degrees and involve many of the same tasks and skills as current frontline taxi 

roles (Study 1). Beyond within-taxi or even within-transportation transitions, Wang et al. 

(2023) identified a number of potential job alternatives for truck drivers based on the 

knowledge, skills, interests, and values of current trucking jobs. Future research should 

identify transition occupations for taxi workers and engage with those workers to 

evaluate the desirability of alternative occupations. Taxi driver roles are often filled by 

immigrants and racial minorities for whom full-time wage work is unavailable (Dubal, 

2017), raising questions regarding whether those individuals could realistically pivot into 

other full-time roles. 

Decision-makers must also work to ensure that remaining driving jobs in an AV 

future do not diminish in quality and are not entirely displaced by more precarious work 

arrangements (i.e., performed by gig workers on a part-time rather than full-time 

employment basis and lacking in labor protections). Thus far, many of these frontline 

labor roles resemble mid-skill, mid-wage positions but are often contractor positions 

(Study 1). As the industry matures and stabilizes and roles become more defined, firms 

should shift these roles to full employees to ensure workers receive benefits and labor 

protections.  

Another approach to bolster quality jobs could be through licensing or 

certification requirements, particularly when such requirements could also improve 

service quality. Taxi drivers, for instance, have become more involved in non-emergency 

medical transport services. These services sometimes require certifications to engage 
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with healthcare insurance providers and local transportation programs (Cluett, 2024; 

DFHV, 2019). Such certifications could ensure that passengers receive the support they 

require and that the workers providing that support get meaningful compensation and 

labor protections. 

Navigating the labor transition from traditional to autonomous modes of 

transportation will require significant coordination between AV firms, workers and 

worker-advocates, and policymakers. While undoubtedly challenging, the criticality of 

this issue cannot be understated. As one interviewed AV Regulatory Expert asserted, 

“Labor is the single most important issue that can make or break this movement 

completely, or push it back significantly… it will make or break it more than any other 

issue that's out there, even more than safety” (Interview with AV Regulatory Expert, 

February 15, 2023). 

 

5. Develop tools and training programs that support quality jobs. 

AV technologies are already creating, and will continue to create, new jobs. These 

jobs include not only roboticists and engineers involved in technology development, but 

also frontline roles that support AV services. As identified in Study 1, some of these roles 

are created from redistributed tasks and others emerge to support specialized functions or 

emergent information processing needs. Decision-makers should work to shape emerging 

roles into high quality jobs. 

One element of that shaping process is the design of tools with which workers 

interface with the technologies. AV firms have designed tooling that allows for less-

technical individuals to engage with the vehicles and fill frontline labor roles. As one 
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Frontline Worker with multiple years of experience in the AV industry explained: 

Very early day autonomy you had to have a lot of computer skill[s] and a lot of 

computer knowledge to understand how to work and how to do these [frontline] 

positions…it's been really cool to see the way that things have been shaped into 

making these roles very accessible for everybody. Even, you know, you may not 

be a computer whiz, but you can definitely work in [remote monitoring] now, 

where I don't think maybe 5-10 years ago, you would have been able to do that. It 

would’ve been very engineering focused (Interview with Frontline Worker, 

August 9, 2023).  

 

Though simplified tooling can create more accessible job opportunities, overly-simplified 

tooling could lead to negative worker outcomes. As Cesafsky et al. (2019) describe, if 

firms limit remote monitors’ situational awareness too much, they could turn the remote 

monitor role into a rote (likely low-paying) microwork job akin to repetitive assembly-

line work.  

At current robotaxi firms, intentional tooling design and worker training still 

allow the frontline workers to exact a sense of agency and draw on critical thinking skills. 

One interviewed Mid-Level Manager at a robotaxi firm described the firm’s training 

process as follows: 

I always equate it to tools, like in a shed…I'm not going to be able to tell you if 

you're building a house, you nail it this way, if you're building a bucket, you 

hammer it this way. I'm just going to teach you this is the hammer and you swing 

it to hit a nail. And that's kind of how our training is. We teach you how our tools 

are used so that when you're in a situation, you know, “Ah, this one requires the 

screwdriver, I need to pull that out. Oh, wait, no, this one requires the saw, I need 

to pull that one out.” So we're going to teach you what the tools are so you know 

which tool to use. And from there, you have to manipulate it to where it will 

provide the path of success for the vehicle to get out of the situation. So that is 

where the critical thinking comes in (Interview with Mid-Level Manager, 

September 26, 2023). 

 

AV firms should continue designing tooling and training programs that balance technical 

complexity with worker empowerment and agency.  

Moving forward, public-private partnerships could play a role in shaping AV jobs 
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into mid-skill professions and supporting workforce development programs to fill these 

roles. As one example, the Contra Costa Transportation Authority’s GoMentum Station is 

leveraging public-private partnerships to promote not only AV technology development, 

but also AV workforce development and training (CCTA, 2024). At the federal level, the 

U.S. Department of Energy recently established an Office of Energy Jobs to ensure that 

job creation, job quality, and equitable access to jobs are taken into consideration in DOE 

funding, initiatives, and priorities. Some of this Office’s programs support jobs focused 

on electric vehicles and electric vehicle infrastructure. These programs could translate to 

the AV realm, as some AV firms are developing vehicles that are both autonomous and 

electric. Alternatively, the Department of Transportation (DOT) could establish a similar 

office focused on vehicle automation jobs, or could expand the National Highway Traffic 

Administration Office of Automation’s purview to track AV worker outcomes.  

AV firms have already begun partnering with community colleges to meet their 

emerging workforce needs, and even offer paid opportunities for students as part of these 

programs (Interview with AV Operations Expert, October 22, 2022). Firms might also 

consider establishing Registered Apprenticeship programs that similarly combine paid 

work experience with industry-specific instruction. The U.S. DOT has already issued 

guidance for state transportation agencies on developing Registered Apprenticeship 

programs for the EV workforce, which could potentially be adapted into similar AV-

focused programs (USDOT, 2024). One factor that may limit the development of AV 

apprenticeship programs is variation in AV firms’ technical approaches. AV firms may 

need to collaboratively develop best practices for required skills and training 

requirements for emerging AV workforce roles to ensure that an apprenticeship program 
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would be broadly applicable.  

 

6. Incorporate workforce considerations into safety cases and safety 

management systems.  

Researchers, regulators, and AV firms are working to determine how best to 

evaluate the safety of AV systems. These efforts have brought about standards for AV 

safety cases (Underwriters Laboratories, 2022) and safety case roadmaps (Wagner & 

Carlan, 2024). Often, the boundary of analysis for the “AV system” is the vehicle system. 

Study 1 reveals, however, that workers also play critical roles in ensuring the safety of 

AV systems and highlights the need to consider work systems as part of safe AV system 

design. AV firms should establish strong safety cultures and draw on best practices from 

related domains like the airline industry to incorporate workforce training into their safety 

management systems. Indeed, as Study 1 discusses, AV firms are already recruiting 

workers from the airline industry.   

Though Study 2 finds that robotaxi firms will require fewer frontline workers to 

support their fleets, AV firms should also weigh the potential cost savings from labor 

reductions against potential negative service performance and quality impacts. As the 

study notes, striving for the lowest possible number of workers may offer minimal 

additional cost savings but could negatively affect worker performance outcomes. 

Human-computer interaction research should investigate worker performance impacts at 

varying labor ratios to inform optimal work system design. When (or if) the AV industry 

becomes sufficiently mature and standardized, these work system designs could become 

codified in regulation in a similar manner as the aviation industry. As one interviewed 
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Senior Manager with aviation experience described: 

…you literally get a book [from the Federal Aviation Administration] of what you 

can and can't do, and that includes people that have to be in certain roles. But that 

is from a hundred years of law and aviation safety and a long history that has got 

us to that point. And all that is very nascent in the self-driving space where we're 

still trying to figure out what business models work, what is the best kind of 

operational design domain, what is the most commercially viable [model]. Much 

less, you know, not even to consider the different types of technology that are 

used. All that is being developed. But I see it eventually getting [to] a similar 

structure...[There] needs to be kind of a system of accountability and some normal 

things to expect from these different companies (Interview with Senior Manager, 

September 5, 2023). 

 

Much of the discussion about AV safety regulation thus far has been focused on the 

design of the vehicle, with calls for the National Highway Traffic Safety Administration 

(NHTSA) to develop standards for AVs (Markey et al., 2024). Evaluations of AV safety 

must consider the broader work systems that monitor and support the AV services and 

their users.  

 

 The author would like to acknowledge the many dedicated individuals already 

working on these issues and hopes that the research and policy recommendations in this 

dissertation can further ongoing discourse and efforts in these critical domains.  
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Chapter 6: Conclusion  

Summary of research contributions and proposed future research 

 

We live in a time of both optimism and trepidation regarding new artificial 

intelligence (AI) technologies that are entering the public sphere and becoming 

increasingly intertwined in our lives. This dissertation explored autonomous vehicles 

(AVs) as a case study of the potential effects of AI-enabled automation in the physical 

world, in particular examining AVs’ impacts to labor and transportation systems via 

competition with other modes. AVs hold promise of helping to address many of the 

persistent problems that plague our transportation systems—issues related to 

environmental sustainability, accessibility, equity, and labor shortages. Yet there is also 

potential for AVs and other AI-enabled automation technologies to cause harm, or at least 

promote an inequitable distribution of benefits. The research presented in this dissertation 

aims to not only inform dialogue regarding potential AI and AV impacts, but also to 

empower technologists, decision-makers, and all of us who have a stake in an AI future 

to engage with and shape that future.  

 

6.2 Summary of Contributions and Proposed Future Research 

Study 1 investigated how the introduction of AVs to a taxi work system reshaped 

tasks and labor roles and provided the first detailed description of frontline labor roles in 

emerging robotaxi services. It is the first study to empirically demonstrate that the 

introduction of AI-enabled automation technology to a work system centered on a non-

routine manual task spurs a rebundling of tasks and labor roles, and the study’s granular 
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analysis revealed that this rebundling occurs via three archetypal patterns: distributing, 

consolidating, and scaffolding. These patterns of role change can be used to refine labor 

outcome analyses and predict labor impacts at the task, role, and sector or economy 

levels.  

The study’s findings suggest that prior analyses may have miscounted the number 

of the number of affected occupations—undercounting impacts in some respects and 

over-counting impacts in others. By taking a work-systems approach, Study 1 

demonstrated that AI introduction can affect multiple roles, not just the primary role 

associated with an automatable task, signaling that prior labor analyses may have 

underestimated AI impacts. Yet it also highlighted that evaluating a role solely through 

the lens of an automatable task can lead to over-counting of the number of impacted jobs; 

the remaining tasks not performed by AI technologies could limit or preclude use of AI in 

certain sectors and curb job displacement. Consideration of connected roles and of the 

technology deployment context could improve the accuracy of AI impact analyses. 

Though integration of AI technologies in the physical world will always involve a 

level of uncertainty, the patterns identified in Study 1 increase the predictability of 

changes that might occur. By evaluating changes in terms of distributing and 

consolidating roles, firms can better plans for the types roles they might require, and 

whether they might need scaffolding roles as part of a transition state. The identified 

patterns also allow researchers to refine their categorization of AI impacts to focus less 

on end-states and more on the processes by which changes are occurring, opening up 

opportunities to design roles in ways the support positive worker outcomes. The 

identified patterns may generalize to other work systems in which non-routine manual 
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tasks are central to the work performed. Future research should test the generalizability of 

the patterns to work systems that primarily rely on other types of tasks.  

Study 1 also offered preliminary insights regarding sociodemographic information 

and current training requirements for the emergent robotaxi workforce which could 

inform the design of workforce development programs for robotaxi services. Similar 

labor roles and labor requirements may be required for autonomous public transit 

services. Future research should perform a more extensive survey of the AV frontline 

labor force to collect more information on the sociodemographics of the frontline workers 

and should examine how these labor roles and their quality might change as the AV 

industry matures. 

Study 2 leveraged the findings from the first study to develop a more refined 

ground-up cost model for a robotaxi service, improving model precision regarding the 

cost of AV technologies and the labor costs needed to operate a robotaxi service. The 

model revealed that labor remains a significant cost for robotaxi services but that robotaxi 

operating costs are still lower than those of taxi services. Fare per mile values were 

highly sensitive to low worker to vehicle ratios (i.e., workers can manage fewer vehicles), 

but firms could reach economies of scale relatively quickly. Regulation that limits how 

many vehicles each robotaxi worker can monitor could result in higher costs for robotaxi 

firms and limit their competitiveness against existing services. Striving for the lowest 

possible number of workers, however, may not be necessary either. After an initial steep 

decline, fare per mile values are relatively similar for labor ratios of 1:15 (worker to 

vehicle) or higher. AV firms will have to weigh marginal labor cost reductions against 

impacts to service quality for their passengers and performance consequences for their 
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employees (e.g., mental workload, situational awareness).  

Though labor remains an important consideration, utilization rates and annual 

mileage will ultimately determine the competitiveness of robotaxi services. The results 

from Study 2 suggest that if jobs shift from taxi to robotaxi services, the total number of 

frontline jobs could decrease by between 57% to 76%, but the distribution of worker 

wages would shift higher. This estimate is based on the specific frontline roles included 

in the study and does not capture additional jobs that may be involved in the technology 

training, development, production, and distribution of AVs, which could change the 

results in terms of the number of jobs required to support robotaxi services and their 

associated wages. Nevertheless, it offers a preliminary estimate for labor impacts to taxi 

services.  

Study 2’s AV Advanced Technology scenario captured a future in which 

technology costs decline significantly. Future work should track the rate at which costs 

actually decline, and whether additional technology costs are later introduced. Overall, 

Study 2’s findings highlight the need to continue accounting for labor costs in an AI 

future. Purported cost savings of AVs, as well as other capital-intensive AI technologies, 

should be considered in light of remaining labor costs, and economic viability may 

depend on the technology’s intended operational context. 

Finally, Study 3 investigated potential mode competition between AVs and transit 

based on public preferences for autonomous and non-autonomous transportation modes. 

The choice-based conjoint experiment revealed that competition between autonomous 

ride-hailing services and transit may remain limited based on individuals’ current 

preferences. On average, individuals were only willing to pay a premium for autonomous 
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modes that had an attendant present, limiting discounts that ride-hailing firms could 

provide. The scenario analyses in the study also revealed that transit remained 

competitive with autonomous ride-hailing modes for trips where good transit options 

were available.  

Study 3 also identified the presence of an in-vehicle attendant as a potentially 

critical feature for early AV adoption, especially for women. On average, women only 

expressed a positive willingness-to-pay for AV ride-hailing services when an attendant 

was also onboard. Future research should examine the underlying reasons behind the 

stated interest in the attendant feature—are members of the public wary of the technology 

or do individuals truly value the presence of a human worker? As members of the public 

gain more exposure to and experience with AV services, their preferences may shift and 

the attendant feature may decrease in importance. Study 3’s choice experiment could be 

fielded again to evaluate preference changes over time. Ultimately, developers of AVs 

and other AI technologies should carefully consider multiple design factors that might 

influence public adoption of emerging AI technologies. 

 

6.2 Navigating the Future of AI-Enabled Technologies 

Autonomous vehicles are one of a number of emergent AI-enabled technologies 

that promise to revolutionize our current systems. This dissertation filled three gaps in the 

existing literature about AV impacts and drew out lessons applicable to other AI-enabled 

automation technologies that can perform non-routine manual tasks. AI technologies are 

powerful tools that can perform more complex tasks than prior forms of automation. 

Nonetheless, they may not suitable for use in all contexts, and their integration into 
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complex systems requires thoughtful planning.  

AI-enabled automation technologies deployed in the physical world will not 

eliminate the need for human labor but will reshape the work systems in which they are 

introduced. Whether firms choose to eliminate labor roles following AI-introduction and 

how they choose to redistribute tasks amongst new and existing roles are important 

decisions that will shape work system design. Transition states may also occur as AI-

technologies improve over time, impacting tasks and roles. When researchers focus on 

the end-states of roles, they miss many of these important decision points. 

AI technology implementation will also be sensitive to deployment context. The 

remaining tasks not performed by AI technologies—potentially influenced by regulatory 

constraints or public preferences—may determine whether the technologies are 

introduced within a specific sector at all. Labor ratios will impact the relative cost-

competitiveness of AI solutions, especially for high-cost AI technologies that may need 

labor cost savings to offset higher capital costs. Utilization will also drive relative 

competitiveness; firms will likely deploy AI technologies in contexts that ensure high 

utilization to maximize revenue generation. Cost is not, however, the only consideration 

for AI technology adoption. Firms looking to integrate AI technologies to perform non-

routine manual tasks need to weigh potential cost reductions against impacts to workers 

and to service quality and accessibility. Moreover, users may still want or need the 

involvement of human workers in order to use the system.  

Autonomous vehicle deployment is unfolding amidst a broader movement toward 

widespread implementation of AI technologies in nearly every aspect of our daily lives. 

As we gain these early insights into the impacts of AVs and other AI-enabled automation 
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technologies, we create the opportunity to proactively shape societal outcomes toward 

desirable futures. 
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Appendix A: Supplemental information for Chapter 2 
 

A.1 Detailed summary of semi-structured interviews 
 

Num. Category Org. Position 

Number 

of 

Interviews 

Total 

Length of 

Interviews 

(min) Date 

General 

Location 

Recorded 

and 

Transcribed 

1 

Commercial 

Deployment 

Firm 

A 

Frontline 

Worker 1 30 

9-

Aug-

23 

Central 

Command 

Center Yes 

2 

Firm 

A 

Frontline 

Worker 1 30 

9-

Aug-

23 

Central 

Command 

Center Yes 

3 

Firm 

A 

Frontline 

Worker 1 30* 

10-

Aug-

23 Fleet Depot Yes 

4 Firm B 

Frontline 

Worker 1 78 

30-

Sep-

22 

Coffee 

Shop Yes 

5 Firm C 

Frontline 

Worker 1 60 

26-

Oct-22 

Coffee 

Shop 

No (Hand-

written notes) 

6 

Firm 

D 

Frontline 

Worker 1 52 

8-

Nov-

22 Zoom Yes 

7 

Firm 

A 

Mid-

Level 

Manager 1 

*(same 

interview) 

10-

Aug-

23 Fleet Depot Yes 

8 

Firm 

A 

Mid-

Level 

Manager 1 52 

26-

Sep-

23 

Central 

Command 

Center Yes 

9 

Firm 

A 

Mid-

Level 

Manager 1 30 

10-

Aug-

23 Fleet Depot Yes 

10 

Firm 

A 

Mid-

Level 

Manager 1 30 

9-

Aug-

23 

Central 

Command 

Center Yes 

11 Firm B 

Mid-

Level 

Manager 1 54 

3-Jan-

23 Zoom Yes 

12 

Firm 

A 

Senior 

Manager 1 30 

10-

Aug-

23 Fleet Depot Yes 

13 

Firm 

A 

Senior 

Manager 2 60 

27-

Dec-

22,  

9-

Aug-

2023 

Zoom, 

Central 

Command 

Center 

Yes, No 

(Hand-written 

notes) 

14 

Firm 

A 

Senior 

Manager 1 30 

10-

Aug-

23 Fleet Depot Yes 

15 Firm C 

Senior 

Manager 1 34 

5-Sep-

23 Zoom Yes 

16 Firm E 

Senior 

Manager 1 55 

30-

Jun-23 Zoom Yes 
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Appendix A.1 (cont.) 
 

Num Category Org. Position 

# of 

Interviews 

Total 

Length 

(min) Date Location 

Recorded 

and 

Transcribed 

17 

Pilot 

Program or 

Government

-Run Service 

Gov. 

Operations 

Management 1 55 

19-

Oct-

22 Zoom Yes 

18 Gov. 

Operations 

Management 1 63 

18-

Oct-

22 Zoom Yes 

19 Gov. 

Operations 

Management 1 64** 

11-

Oct-

22 Zoom Yes 

20 Gov. 

Policy/ 

Communicat

ion 1 

**(same 

interview) 

11-

Oct-

22 Zoom Yes 

21 Nonprofit 

Policy/ 

Communicat

ion 1 32 

27-

Oct-

22 Zoom Yes 

22 

External 

Perspective 

Nonprofit 

AV 

Operations 

Expert 1 29 

20-

Oct-

22 Zoom Yes 

23 Industry 

AV 

Operations 

Expert 1 60 

24-

Feb-

23 Zoom Yes 

24 Consulting 

AV 

Operations 

Expert 1 42 

7-

Nov-

22 Zoom Yes 

25 Consulting 

AV 

Regulation 

Expert 1 63 

21-

Feb-

23 

Office 

Building Yes 

26 Consulting 

AV 

Regulation 

Expert 1 68 

15-

Feb-

23 Zoom Yes 

27 Industry 

AV 

Regulation 

Expert 1 53 

8-

Nov-

22 

Coffee 

Shop Yes 

28 Industry 

Taxi 

Manager 1 30 

12-

Mar-

24 Zoom 

No (Hand-

written 

notes) 
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Appendix A.2: Detailed summary of direct observations 
 

 
Num. Category Observation/Event description Duration Date(s) 

1 

Ride 

Daytime ride in robotaxi vehicle, operator onboard. 

Had informal conversation with operator. 

31 min 7-Jul-22 

2 Evening ride in robotaxi vehicle, operator onboard. 

Had informal conversation with operator. 

32 min 7-Jul-22 

3 Daytime ride in robotaxi vehicle, operator onboard. 

No conversation with operator. 

16 min 8-Jul-22 

4 Daytime ride in robotaxi vehicle, operator onboard. 

Had informal conversation with operator. 

15 min 8-Jul-22 

5 Daytime ride in robotaxi vehicle, operator onboard. 

Had informal conversation with operator. 

14 min 8-Jul-22 

6 Daytime ride in robotaxi, no operator onboard. 

Included call with customer service agent. 

18 min 9-Jul-22 

7 Daytime ride in robotaxi, no operator onboard. 

Attempted call to customer service agent but received 

notice that there was trouble connecting. 

20 min 9-Jul-22 

8 Nighttime ride in robotaxi, no operator onboard. 17 min 9-Jul-22 

9 Nighttime ride in robotaxi, no operator onboard. 14 min 10-Jul-22 

10 Nighttime ride in robotaxi, no operator onboard. 

Included call with customer service agent. 

15 min 10-Jul-22 

11 Evening ride in robotaxi vehicle, no operator onboard. 

Included call with customer service agent. 

16 min 11-Jul-22 

12 Nighttime ride in robotaxi, no operator onboard. 

Included call with customer service agent. 

15 min 10-Aug-

23 

13 Nighttime ride in robotaxi, no operator onboard. 14 min 10-Aug-

23 

14 

Non-

participant 

observation 

Non-participant observations of a robotaxi central 

command center. Engaged in informal conversations 

with remote monitors, customer service agents, 

information coordinators, and managers. 

6 hours 9-Aug-23 

15 Non-participant observations of a robotaxi fleet depot. 2 hours 10-Aug-

23 

16 

Conference 

Automated Road Transportation Symposium in San 

Francisco, CA. Participation in Workforce 

Development for 21st Century Automated Mobility 

breakout session. 

5 days 10-July-

23 to 14-

Jul-23 

17 Texas Department of Transportation Virtual 

Connected and Autonomous Vehicles Peer 

Symposium 

3.5 hours 7-Mar-23 

18 International Association of Transportation Regulators 

Annual Conference in Scottsdale, AZ. Robotaxi 

vehicles from Cruise and Waymo present at the 

conference, along with operators from both firms who 

were available to answer general questions. Engaged 

in informal conversations with operators. 

4 days 27-Sep-

23 to 30-

Sep-23 

19 Transportation Research Board Conference sessions 

and committee meetings on AVs 

9 hours 7-Jan-24 

to 11-

Jan-24 
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Appendix A.3: Detailed summary of archival documents 
 

Num.  Category Role(s) Discussed Document Description Year # 

Pages 

1 Academic 

article 

App, Driver  PhD Dissertation by Lindsey Cameron on 

the work of ride-hailing drivers and the rise 

of algorithm management systems 

2020 205 

2 Academic 

article 

Driver Journal article by Veena Dubal on a history 

of work, regulation, and labor advocacy in 

San Francisco's 

Taxi & Uber Economies 

2017 65 

3 Government 

data 

Dispatcher O*NET data on "Dispatchers, Except 

Police, Fire, and Ambulance" 
2024 1 

4 Government 

data 

Driver O*NET data on tasks for "Taxi Drivers" 2024 1 

5 Government 

data 

Manager Data from the U.S. Bureau of Labor 

Statistics on "Transportation, Storage, and 

Distribution Managers" 

2023 1 

6 Government 

data 

Mechanic Data from the U.S. Census Bureau ACM 

PUMS 5-Year Estimate on "Automotive 

Service Technicians and Mechanics" 

2021 1 

7 Government 

data 

Mechanic O*NET data on training requirements for 

"Automotive Service Technicians and 

Mechanics" 

2024 1 

8 Interview 

supplement 

App, Customer 

Service, 

Information 

Coordinator, 

Operator, Remote 

Monitor, Vehicle 

Written supplement from interviewee about 

roles at Firm F 
2024 2 

9 Interview 

supplement 

App, Driver, 

Operator, Vehicle 

Written supplement from AV Regulation 

Expert detailing operational differences 

between traditional taxis and robotaxis. Also 

includes information about current 

regulation for presence of an operator in 

different U.S. states.  

2023 11 

10 Interview 

supplement 

App, Manager, 

Mechanic, 

Operator, Remote 

Monitor 

Email response answering questions about 

labor roles for Firm G 
2023 1 

11 Interview 

supplement 

Vehicle Spreadsheet detailing the operating status 

and charging requirements for 1 month of 

service of an autonomous vehicle shuttle 

service 

2021 3 

12 Job posting Customer Service Job posting for Customer Service 

Representative by a transportation labor 

contractor 

2023 2 

13 Job posting Customer Service Job posting for Customer Service Shuttle 

Specialist in Port Saint Lucie, FL 
2023 2 

14 Job posting Customer Service Job posting for Customer Service Shuttle 

Specialist in Orlando, FL 
2023 2 

15 Job posting Customer Service Job posting for Customer Service Shuttle 

Specialist in Altamonte Springs, FL 
2023 2 

16 Job posting Field Support Job posting for Driverless Support 

Specialist in San Francisco, CA 
2023 2 
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Appendix A.3 (cont.) 
 

Num.  Category Role(s) Discussed Document Description Year # 

Pages 

17 Job posting Field Support Job posting for Driverless Support Specialist 

in Phoenix, AZ 
2023 2 

18 Job posting Field Support, 

Remote Monitor, 

Operator 

Webpage with starting wage information for 

frontline contingent worker positions 
2023 2 

19 Job posting Incident Expert Job posting for Incident Expert in 

Scottsdale, AZ 
2023 2 

20 Job posting Information 

Coordinator 

Job posting for information coordinator 

postition 
2022 2 

21 Job posting Information 

Coordinator 

Webpage with estimated salary information 

for Watch Officer position and position 

description 

2023 2 

22 Job posting Manager Job posting for Site Manager 2023 2 

23 Job posting Manager Job posting for Team Lead, Rider Operation 2023 2 

24 Job posting Manager Job posting for Rider-Only Manager 2024 3 

25 Job posting Manager Job posting for night manager 2024 4 

26 Job posting Manager, Remote 

Monitor 

Job posting for Associate Manager, 

Command Center Operations 
2023 2 

27 Job posting Mechanic Job posting for Site Autonomy Engineer 2024 2 

28 Job posting Operator Job posting for Autonomous Vehicle 

Operator by a transportation labor contractor 
2023 2 

29 Job posting Operator Job posting for Autonomous Vehicle 

Operator in Grand Rapids, MN 
2023 2 

30 Job posting Operator Job posting for Autonomous Vehicle 

Operator in Arlington, TX 
2023 2 

31 Job posting Operator Job posting for Autonomous Vehicle 

Operations Specialist in Houston, TX 
2023 2 

32 Job posting Operator Job posting for Level 5 Vehicle Operator 2023 2 

33 Job posting Operator Job posting for Autonomous Vehicle Safety 

Driver 
2023 2 

34 Job posting Operator Job posting for Autonomous Vehicle Driver 

by a transportation labor contractor 
2024 1 

35 Job posting Remote Monitor Job posting for Assistance Advisor in 

Scottsdale, AZ 
2023 2 

36 News article App, Customer 

Service, Field 

Support, Mechanic, 

Operator, Remote 

Monitor 

News article describing Waymo's depot 

where fleet management occurs 
2018 16 

37 News article Frontline workers 

(unspecified) 

News article about staff reductions by Cruise 

after the company's involvement in an 

accident in San Francisco 

2023 8 

38 News article Other News article about test tracks operated by 

Waymo 
2017 12 

39 News article Remote Monitor News article describing companies 

developing technology to support for 

Remote Monitors 

2019 5 

40 News article Remote Monitor News article about companies developing 

remote monitoring software platforms 
2020 6 

41 News article Remote Monitor News article describing role of remote 

monitors for May Mobility's service 
2023 9 

42 News article Vehicle News article about how Waymo is designing 

their vehicles to interact with pedestrians 
2023 8 
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Appendix A.3 (cont.) 

 
Num.  Category Role(s) Discussed Document Description Year # 

Pages 

43 Other Mechanic Course requirements for De Anza 

Community College Autonomous and 

Electric Vehicle Technician Pathway 

2024 2 

44 Presentation Driver, Operator, 

Vehicle 

Presentation on Guiding Principles for 

Equitable AV Implementation of Robotaxis 

by Matthew Daus 

2022 19 

45 Report App, Customer 

Service, Field 

Support, Incident 

Expert, Remote 

Monitor, Vehicle 

Cruise Passenger Safety Plan 2021 35 

46 Report App, Customer 

Service, Field 

Support, Incident 

Expert, Remote 

Monitor, Vehicle 

Waymo Passenger Safety Plan 2022 71 

47 Report App, Driver, 

Operator, Vehicle  

International Association of Transportation 

Regulators' Best Practices, Guiding 

Principles & Model Regulations for 

“Robotaxis” 

2023 4 

48 Report App, Operator, 

Remote Monitor, 

Vehicle 

Proposal for government-run deployment of 

a commercial rideshare service 
2021 16 

49 Report Driver, Operator, 

Remote Monitor 

Report on suggested policies, laws, and 

regulation for operation of autonomous 

vehicles across the New England region 

2022 214 

50 Report Field Support MIT report quoting a news article about 

Waymo 'chase vans' that include two 

Waymo representatives (p.14) 

2020 34 

51 Report Operator Cruise safety report appendix detailing 

operator training and evaluation 
2018 6 

52 Report Operator, Vehicle SAE J3016: Taxonomy and Definitions for 

Terms Related to Driving Automation 

Systems for On-Road Motor Vehicles 

2021 2 

53 Report Vehicle Nuro's petition for temporary exemption 

from various  

requirements of vehicle safety standards for 

their all-electric AV 

2019 36 

54 Report Vehicle General Motors' petition for temporary 

exemption from various requirements of 

vehicle safety standards for their all-electric 

AV 

2022 40 
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Appendix B: Supplemental information for Chapter 3 
 

 

Equations used for cost estimation and their assumed distributions can be accessed via 

online appendices at: https://github.com/lkaplan25/av_labor_cost_2024 
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Appendix C: Supplemental information for Chapter 4 

 

Appendix C.1 Full Survey 

 
Transportation Research Study 

INTRODUCTION 

You are invited to take part in a research study being conducted by John 
Helveston, Ph.D., Assistant Professor in Engineering Management and Systems 
Engineering at the George Washington University. 

You are being asked if you want to take part in this study because you are a 
resident in the Washington D.C. metro area. Please read this form and ask us 
any questions that will help you decide if you want to be in the study.  Taking part 
is completely voluntary and even if you decide you want to, you can quit at any 
time. 

You must be at least 18 years old to take part in this study. You are 1 of up to 
5,000 people taking part in this study at by GWU.  

 

PROCEDURES 

The total amount of time you will spend in this study is 10 minutes. 

 

RISKS & CONFIDENTIALITY 

The study has no anticipated risks. 

You are free to skip any questions or stop taking the survey at any point. We are 
not collecting your name or other identifiable information about you, and all data 
will be encrypted. The records of this study will be kept private. In any published 
articles or presentations, we will not include any information that will make it 
possible to identify you as a subject. Your records for the study may be reviewed 
by departments of the University responsible for overseeing research safety and 
compliance. Once all data are collected, anonymized versions of the data will be 
made publicly available on a repository on GitHub. 

You need not respond to the demographic questions at the end, including 
questions about age, gender identification, ethnicity, and formal education. We 
collect this information strictly for the purposes of performing demographic 
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comparisons of the data with that of the general public. Survey responses without 
answers to demographic question may exclude your response from being 
included in some of these comparisons. Data without demographics may still be 
presented in some summary totals. 

 

BENEFITS 

Taking part in this research will not help you directly, however the benefit to 
society will be a better understanding peoples’ preferences for different 
automated transportation modes in the United States. 

  

COMPENSATION 

This survey is made available to respondents via Dynata, which offers great 
diversity in incentives as some people are motivated by cash, points, or by being 
able to donate to charity. A cash reward is simply a monetary value in $USD. 
Points are values that can be traded in for different, non-monetary rewards on 
the research platform. Finally, donations to a charity of your choice can also be 
selected as a reward. Dynata aims to respond to all of these individual 
motivations in order to provide a sample which is diverse and as representative 
as possible of the target population. Dynata uses a reasonable level of reward 
based on the amount of effort required, the population, and appropriate regional 
customs. Regardless of the type of incentive, the value is the same for every 
respondent in a given study. 

 

QUESTIONS  

Talk to the research team if you have questions, concerns, complaints, or think 
you have been harmed. You can contact the Principal Investigator listed on the 
front of this form at 202-994-7173.  For questions regarding your rights as a 
participant in human research call the GWU Office of Human Research at 202-
994-2715 or by email at ohrirb@gwu.edu. 

To ensure anonymity your signature is not required. Your willingness to 
participate in this research study is implied if you proceed. 
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[Next page] 

 
Thank you for your interest in this survey. 

To start, please enter your zip code: ______________ 

 

[Next page] 

  



186 
 

If zip code is not within Washington metropolitan area: 

Sorry, we are only looking for individuals who live in the Washington metropolitan 
area to participate in this survey. 
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What are automated vehicles? 

 
This survey will ask about your preferences for different automated and non-
automated transportation modes. To start, let's learn a little bit more about what 
automated vehicles are. 

Automated vehicles or “driverless cars” are vehicles that are operated by 
computer systems instead of human drivers. Many cars today include automated 
features like automatic braking and lane-keeping assistance. In a fully automated 
vehicle, a computer system would perform all driving tasks with no assistance 
from a human driver. 
 
The following short video will explain a little more about different levels of vehicle 
automation and how automated vehicles work. 

Video: https://vimeo.com/578614475 
Source: Pennsylvania Department of Transportation 

 

This survey will ask you to compare nonautomated and automated transportation 
modes. When the survey describes a mode as automated, it is referring to a level 5 fully-
automated vehicle, meaning that the vehicle would drive itself at all times and in all 
situations without any human assistance.  

To start, we’d like to learn a little bit about your current transportation routine and your 
general thoughts about automated vehicles.  

[Next page] 

  

https://vimeo.com/578614475
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Your current transportation routine 
This section includes questions related to your transportation routines and attitudes 
towards automated vehicles. Given that your transportation routine may have changed 
due to the COVID-19 pandemic, please consider your transportation routine prior to the 
pandemic. 

 

(1) Which of the following modes of transportation do you use regularly (at 
least 3-5 times per week)? 

a. Personal vehicle 
b. Bus 
c. Rail  
d. Ride-hailing service 
e. Shared ride-hailing service 
f. MetroAccess 
g. Other: 

 
(2) Which of the following modes of transportation do you use occasionally (a 

few times per month)? 
a. Personal vehicle 
b. Bus 
c. Rail  
d. Ride-hailing service 
e. Shared ride-hailing service 
f. MetroAccess 
g. Other: 

 
(3) Which of the following modes of transportation have you never used? 

a. Personal vehicle 
b. Bus 
c. Rail  
d. Ride-hailing service 
e. Shared ride-hailing service 
f. MetroAccess 

 

 
[Next page] 
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(4) For each of the following transportation modes, please check how your 

use of the mode has changed due to the COVID-19 pandemic: 
 

 Use more 
than before 

Use the 
same as 
before 

Use less than 
before 

Bus (e.g., Metrobus, ART, Ride 
On) 

   

Rail (Metrorail or DC Streetcar)    

Ride-hailing service (e.g., Lyft, 
Uber, Via) 

   

Shared ride-hailing service e.g., 
Lyft Shared or UberPool) 

   

 
 
 

[Next page] 
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(5) To what degree do you agree with the following statements? 

 

 Strongly 
disagree 

Disagree Neutral Agree Strongly 
agree 

I am familiar with the 
concept of automated 
vehicles. 

     

I would feel comfortable 
riding in a fully-automated 
vehicle. 

     

Automated vehicles will 
increase transportation 
costs. 

     

Automated vehicles will be 
safer than human-driven 
vehicles 

     

Automated vehicles will 
cause more problems than 
they will solve. 

     

Automated vehicles will 
improve the availability of 
transportation options. 

     

I am willing to share an 
automated vehicle with 
people I don’t know. 

     

I have easy access to public 
transportation where I live. 

     

I have easy access to a 
personal vehicle 

     

 
 

[Next page] 
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Transportation Mode Options 

 
Now that you’ve shared about your current transportation routine, we’d like you to 
consider a future in which you can choose from various automated and non-automated 
transportation options.  
 
Let’s learn about these potential transportation options.  
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Transportation Mode Options 
 

Bus (e.g., Metrobus, ART, Ride On) 

 
Please imagine that in the future, buses could be automated or non-
automated. 
Automated buses would follow the same pre-determined routes as non-
automated buses but would not have a bus driver. 

 

Rail (Metrorail, DC Streetcar) 

 
 

Please imagine that in the future, rail systems (Metrorail, DC Streetcar) 
would remain non-automated. 
They would function the same as they do now and would follow the same 
routes. 
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Ride-hailing Service (e.g., Lyft, Uber, Via) 

 
 

Please imagine that in the future ride-hailing services could be automated 
or non-automated. 
The ride-hailing service would be similar to Uber, Lyft or Via. 
You would order a vehicle using a smartphone and could select both your 
pickup and drop-off locations. 
 

Shared Ride-hailing Service (e.g., Lyft Shared, UberPool) 

 
Please imagine that in the future shared ride-hailing services could be 
automated or non-automated. 
The service would be similar to UberPool or Lyft Shared. 
You would order a vehicle using a smartphone and could select both the 
pickup and drop-off locations. Rides would be shared with other 
passengers who are not a part of your group but are traveling along a 
similar route. 
 

 

[Next page] 
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Mode Features 
 
Some of the transportation modes can have special features. These features 
include being automated or having an attendant on board. 

Automated 

 
Vehicles that are automated would be operated by computer systems with 
no assistance from a human driver. No option to take control of the vehicle 
would be available. 
 

Attendant 

 
Vehicles with an attendant would have a company official on board to help 
passengers. This attendant would not be responsible for operating the 
vehicle. 
 

Only automated modes would have the potential to have an attendant on board, 
as shown in the diagram below. 
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[Next page] 

 

  



196 
 

Checking in 

 

 
 
Which of the following options does the image above describe? 

 Not automated 

 Automated, No attendant present 

 Automated, Attendant present 
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Going out on a leisure trip 

 
Now that you’ve learned about the different potential modes, we would like to learn 
about your preferences for those modes.   
 
For this next section, imagine you are going out on an evening leisure trip and are 
deciding how to get there. You will be presented with four different options for 
transportation modes that you could take. Consider the four options and click on the box 
to select the option that you would choose. 
 
Let’s start with a practice question.  
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Let’s practice! 
Imagine you are going out on an evening leisure activity. Which transportation option would 

you choose? (Please click on the box for your desired option to select it.) 
 
 

Bus 
Price: $1 

Wait time: 5 
Travel time: 20 

 

 
 

Rail 
Price: $3 

Wait time: 5 
Travel time: 20 

 

 

Ride-hailing 
Price: $15 

Wait time: 5 
Travel time: 30 

 

 

Shared Ride-hailing 
Price: $10 

Wait time: 5 
Travel time: 35 

 

 

 

 

[Next page] 
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Great work! 
 
 
Now let's begin the choice tasks. You will be asked 8 questions in total. For each 
scenario, please imagine that you are going out on an evening leisure activity. 
 
 

 

[Next page] 
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Conjoint questions 

Subject answered 8 choice questions posed in the manner below. The modes remained 
fixed for the four options but the attributes (price, total trip time, automation, attendant) were 
randomized for each question and each participant based on the individual’s respondent ID. 
 
(1 of 8) Imagine you are going out on a leisure activity. Which transportation option would 
you choose? 
 

Bus 
Price: $2 

Wait time: 5 
Travel time: 25 

 

 
 

Rail 
Price: $3.85 
Wait time: 5 

Travel time: 25 
 

 

Ride-hailing 
Price: $10 

Wait time: 5 
Travel time: 15 

 

 

Shared Ride-
hailing 

Price: $7 
Wait time: 5 

Travel time: 26 
 

 

 

 

[Next page] 
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Nice job! 

For the previous 8 choice questions, which best describes the type of evening leisure 
activity you were imagining? 

 Personal business 

 Drop off/pick up 

 Shop/meal 

 Social/recreation 

 Other (please describe below) 

If you selected “Other”, please describe what type of evening leisure activity you were 
imagining: 

[Next page] 

Almost done! 

We'd like to ask you just a few final demographic questions. We collect the following 
information to contribute to further data analysis. 

 
1. In what year were you born? (select from drop-down) 

 
2. What is your gender? 

a. Female 
b. Male 
c. Trans male/trans man 
d. Trans female/trans woman 
e. Genderqueer/gender non-conforming 
f. Prefer not to say 
g. Different identity (please state): 

 
3. I identify my race as (select all that apply): 

a. Asian 
b. Black/African American 
c. White 
d. Hispanic/Latinx 
e. American Indian/Alaska Native 
f. Native Hawaiian/Pacific Islander 
g. Prefer not to say 
h. Different identity (please state):  

 
4. What is the highest degree or level of school you have completed? If 

currently enrolled, please use the highest degree received. 
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a. Less than a high school diploma 
b. High school degree or equivalent (e.g. GED) 
c. Some college or university, no college degree 
d. Trade/technical/vocational training, no degree awarded 
e. Associate’s degree (e.g., AA, AS) 
f. Bachelor’s degree (e.g. BA, BS) 
g. Graduate or Professional degree (e.g. PhD, MD, JD, MS) 
h. Prefer not to say 

 
5. What is your annual household income (from all sources) before taxes and 

other deductions from pay? 
a. Less than $25,000 
b. $25,000 - $34,999 
c. $35,000 - $49,000 
d. $50,000 - $74,999 
e. $75,000 - $99,999 
f. $100,000 - $149,999 
g. $150,000 - $199,999 
h. $200,000 - $249,999 
i. $250,000 - $299,999 
j. $300,000 - $399,999 
k. Greater than $400,000 
l. Prefer not to say 

 
6. Do any of the following descriptions apply to you that impact what 

transportation modes you use (select all that apply): 
a. I have a physical disability. 
b. I have a visual impairment. 
c. I have an intellectual disability. 
d. None of the above apply.  
e. Other (please explain):  

 
7. If you have a cellphone, is it a smartphone? 

a. Don’t have a cellphone 
b. Have a cellphone but not a smartphone 
c. Have a smartphone 

 
 

8. Do you have access to a bank account that you use regularly? 
a. Yes 
b. No 
c. Have but don’t use regularly 

 
Please let us know if you have any other thoughts or feedback on this survey. 
Your feedback will help us make future improvements  
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[Submit] 

 

 
Thank you, your responses have been recorded. You can now close this window. 
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Appendix C.2 Weighted Utility Model Results 

 
Table C.2: Discrete choice model coefficients in WTP space 

Attribute Coef MXL MXL Weighted 

Lambda   0.094 (0.006) *** 0.100 (0.007) *** 

Travel time 𝛽1  -0.573 (0.049) *** -0.547 (0.047) *** 

Bus travel time 𝛽2  0.062 (0.049)     ; 0.046 (0.047)     ; 

RH travel time 𝛽3  0.232 (0.053) *** 0.202 (0.051) *** 

Shared RH travel time 𝛽4  0.203 (0.050) *** 0.155 (0.048) *** 

Bus 𝛽5 𝜇 -6.665 (1.454) *** -6.063 (1.396) *** 

(base = Rail)  𝜎 -10.632 (0.835) *** -10.096 (0.788) *** 

Bus - Automated 𝛽6 𝜇 1.220 (0.725)    . 0.365 (0.706)     ; 

Bus – Attendant present  𝜎 9.822 (1.078) *** 8.812 (0.985) *** 

Ride-hailing (RH) 𝛽7 𝜇 -7.193 (1.573) *** -6.162 (1.504) *** 

(base = Rail)  𝜎 13.168 (0.886) *** 12.855 (0.841) *** 

RH - Automated 𝛽8  0.731 (0.802)     ; -0.070 (0.782)     ; 

RH - Attendant present 𝛽9  10.931 (1.106) *** 9.773 (1.006) *** 

Shared RH 𝛽10  -11.535 (1.584) *** -10.042 (1.489) *** 

(base = Rail) 𝛽11  -12.503 (0.913) *** -12.227 (0.879) *** 

Shared RH - Automated 𝛽12  2.903 (0.815) *** 1.872 (0.773)   * 

Shared RH, Attendant present 𝛽13  8.560 (1.011) *** 8.040 (0.958) *** 

Log-Likelihood: -16,798.2 -15,365.3 

Null Log-Likelihood: -18,787.1 -17,217.8 

AIC: 33,630.3 30,764.5 

BIC: 33,758.1 30,892.3 

McFadden R2: 0.1 0.1 

Adj McFadden R2: 0.1 0.1 

Number of Observations: 13,552.0 13,552.0 

Number of Clusters 1,694.0 1,694.0 

Standard errors of estimates are presented in parentheses. Coefficient units are in USD $. * ≤ 0.05. ** ≤ 0.01.  

*** ≤ 0.0001. 
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Figure C.3: Mean estimated values with 95% confidence interval bars for predicted market share based on introducing automation, 
an attendant, and price discounts for six trip scenarios.  

As one moves left to right across the x-axis, additional features are added to the ride-hailing and shared ride-hailing modes. “Status 
Quo” indicates that none of the modes are automated or have an attendant, and that the modes’ prices reflect current prices.  

Appendix C.3 Scenario Analyses Results 
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Appendix C.4 Mode Share of Non-Commute Trips for Regional Core, and Equity 

Emphasis Areas (EEAs) 
 
Table C.4: Mode Share of Non-Commute Trips for Regional Core, 
and Equity Emphasis Areas (EEAs).  
     Table Adapted from Joh 2020. 

Non-Commute Mode Core Not in EEAs EEAs 

Rail 6.5 2.1 4.2 

Bus 4.3 0.9 4.9 

Taxi/Ride-Hail 2.9 0.8 1.4 

Drive Alone 24.6 36.6 31.1 

Drive Other and Auto Passenger 28.6 44.2 39.4 

Walk 28.3 10 13.9 

Bicycle 2.9 1 1.5 

School Bus 1.4 4.2 3.4 

Other 0.5 0.3 0.2 

 


